
FALL 2005: COT 5407 Intro. to Algorithms

[Homework 2; Due Sep 29 at start of class]

Reminder: As in the previous homework add a signed statement: I have adhered

to the collaboration policy for this class and that whenever no explicit

citations or sources of help are indicated, what I have presented is my own

work.

Problems

9. (Exercise) Solve these exercises (These will not be graded; it is enough to provide
just final answers to show you have worked it out): Exercise 7.1-1, p148; Exercise 7.2-
2, p153; ercise 7.2-4, p153; Exercise 6.2-1, p132; Exercise 6.3-1, p135; Exercise 6.4-1,
p136; Exercise 6.5-1, p140;

10. (Regular) List out the sorting algorithms that have a worst-case time complexity of
O(n log n). No explanation is required.

11. (Regular) Write down the best-case time complexities of all the sorting algorithms
discussed in class and list them in increasing order.

12. (Regular) Study Randomized-Partition and Randomized-Quicksort from page
154 of your text. Now modify it to implement two new features:

(a) Implement the median-of-3 method for choosing the pivot (described on page
162);

(b) Implement R. Sedgewick’s idea (1978) to avoid recursive calls when the size of
the array is at most k. Set the value of k to be 8, which is the cutoff value used
in the 1997 Microsoft C library implementation of Quicksort.

13 (Exercise) Read Section 6.5 and algorithm Max-Heap-Insert on page 140 and then
solve Exercise 6.5-2, p140.

14. (Regular) A sorting algorithm is said to be stable if the relative order of any equal
items in the input list is not changed in the output list. In order to show that a sorting
algorithm is stable, one would need a mathematical proof. However, to prove that it
is not stable, all we need is a simple “counterexample”. It should be obvious to you
that Insertion Sort, Bubble Sort, and Merge Sort are stable sorting algorithms (first
convince yourself of this). For each of the following sorting algorithms, state which
ones are not stable by using simple examples: Selection Sort, Quick Sort, and Heap
Sort. Devise the smallest example you can build, if you claim the algorithm is not
stable. Write down a brief argument if you think it is stable. You should consider a
sorting algorithm to be stable if the algorithm given to you in the book or the one
given to you in class (or a minor variant thereof) is stable.

15. (Extra Credit) (Exercise 8-5, p180)


