Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

S/elor Figure 2.1 Sorting a hand of cards using insertion sort.

Sorting

* Input is a list of n items that can be compared.
Output is an ordered list of those n items.

Fundamental problem that has received a lot of attention
over the years.

Used in many applications.
Scores of different algorithms exist.

Task: To compare algorithms
- On what bases?

- Time

- Space

* Other

9/6/07 COT 5407 2

Sorting Algorithms

* Number of Comparisons

* Number of Data Movements

» Additional Space Requirements

9/6/07 COT 5407

Sorting Algorithms

- SelectionSort

« InsertionSort
- BubbleSort

- ShakerSort
* MergeSort

+ HeapSort
+ QuickSort
+ Bucket & Radix Sort

- Counting Sort

9/6/07 COT 5407

SelectionSort

Array Position

Initial State

After Iteration 1

After Iteration 2

After Iteration 3

After Iteration 4

After Iteration 5

N TN (NN N[0 | O

W W w w| OO

o1 | O | O |\ O |0 | O | N

O | O | OO | OO (OO ([N | W

o |00 |0 O[O | O | Db

O O | O O | Ww | w | O

9/6/07

COT 5407

Psuedocode

- Convention about statements

- Indentation

- Comments

Parameters -- passed by value not reference
And/or are short-circuiting

9/6/07 COT 5407

SelectionSort

SELECTIONSORT(array A)

1 N « length|A]

2 forp—1to N

3 do Compute 7, the index of the
smallest item in A[p.. V]

4 Swap A|p| and A|j]

9/6/07 COT 5407 7

SelectionSort

SELECTIONSORT(array A)

1 N <« length|A]
2 forp—1to N
do > Compute

3 J—p

4 form—p+1to N

5 do if (Ajm| < Alj])

§ then j — m
> Swap Alp| and A|j]

7 temp «— Alp|

8 Alp] — Alj]

9 Alj] < temp

9/6/07 COT 5407

SelectionSort: Algorithm Invariants

* iteration k:
- the k smallest items are in correct location

* NEED TO PROVE THE INVARIANTI

9/6/07 COT 5407 9

How to prove invariants & correctness

- Initialization: prove it is true at start

* Maintenance: prove it is maintained within iterative control
structures

» Termination: show how to use it to prove correctness

9/6/07 COT 5407 10

Algorithm Analysis

+ Worst-case time complexity
* (Worst-case) space complexity
+ Average-case time complexity

9/6/07 COT 5407

11

SelectionSort

SELECTIONSORT(array A)

1 N <« length|A]
2 forp—1to N
do > Compute

3 J—p

4 form—p+1to N

5 do if (Ajm| < Alj])

§ then j — m
> Swap Alp| and A|j]

7 temp «— Alp|

8 Alp] — Alj]

9 Alj] < temp

9/6/07 COT 5407

O(n?) time
O(1) space

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

InsertionSort

1 2 3
(a) |3 4
I 2 3
(d) [2141]5

Figure 2.2 The operation of INSERTION-SORT on the array A = (5,2, 4,6, 1, 3). Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)-(¢) The iterations of the for loop of lines 1-8. In each iteration, the black rectangle holds the
key taken from A[], which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key is moved to in line 8. (f) The final sorted array.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

INSERTION-SORT(A)

[for j « 2tolength[A]

2 do key < A[J]

3 > Insert A[j] into the sorted sequence A[l..j — 1].
4 i — j—1

5 while/ > O and A[i] > key

6 do Ali + 1] «— A[i]

7 | — i — |

8 Ali + 1] < key

Loop invariants and the correctness of insertion sort

9/6/07 COT 5407 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

INSERTION-SORT(A)

2
3

S0 =] o h

for | <« 2 to lenoth[A]

9/6/07

do key < A[j]

= Insert A[j] into the sorted
sequence A[L.. j —1].

I — j—1

while i > 0 and A[i] > key
do Ali + 1] «— A[{]

P — [— |

Ali + 1] « key

COT 5407

Hn

ey

15

InsertionSort: Algorithm Invariant

- iteration k:
- the first k items are in sorted order.

9/6/07 COT 5407 16

Figure 8.3

Basic action of insertion sort (the shaded part is sorted)

Array Position 0| 1 2 | 3| 4| 5
Initial State 8 | 5|1 9| 2| 6| 3
After a[0..1] is sorted 5| 8| 9] 2| 6| 3
After a[0..2] is sorted 5|1 8| 9| 2| 6| 3
After a[0..3] is sorted 2 | 5|1 8| 9| 6| 3
After a[0..4] is sorted 2 | 5|1 61| 8] 9| 3
After a[0..5] is sorted 2 | 3| 5| 61| 8|9
9/6/07 COT 5407 17

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss

© 2002 Addison Wesley

Figure 8.4

A closer look at the action of insertion sort (the dark shading indicates the
sorted area; the light shading is where the new element was placed).

Array Position o | 1 2 | 3| 4|5
Initial State 8 | 5
After a[0..1] is sorted 5|1 81| 9
After a[0..2] is sorted 5|1 81| 9| 2
After a[0..3] is sorted 2 | 51 8| 9| 6
After a[0..4] is sorted 2 | 5|1 6| 8| 9| 3
After a[0..5] is sorted 2 1 3| 5| 6| 8|9

9/6/07

COT 5407 18

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Visualizing Algorithms 1

Position

|

Ty b i
tr o b FeTeT e 2ty i

Sorted

Unsorted

19

COT 5407

9/6/07

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

BUBBLESORT(A)

| fori < 1tolength|A]

2 do for j < length[A] downto i + 1
3 doif A[j] < A[j — 1]

then exchange A[j] < A[j — 1]

N

O(n?) time
O(1) space

9/6/07 COT 5407 20

BubbleSort: Algorithm Invariant

* In each pass, every item that does not have
a smaller item after it, is moved as far up in
the list as possible.

- Tteration k:

- k smallest items are in the correct location.

9/6/07 COT 5407 21

Visualizing Algorithms 2

Position

Un.so‘rted - Sorted

9/6/07 COT 5407 22

Visualizing Comparisons 3

oo b /s

N
SIS
AN
t\

/(I RS
e
/4 /e
V4l /e
/411774 AN
AN 1SS
AN s
T Za0
AV Vs
VAN 7ZA%S
AN N
AHHNIN N
IANN7A5
24NN
WXV N
@ (ANN 7N
N e AN

FVUARANAN N
-. /.. .r. .u/ .). //./.

..-. : vl e g e o A

...._.. __._ __. _ ' __ __,._...,_,/._,. // 3 \\ \ \\\m_.‘ _._. __ f ___ ..__ |

Y
YWD
YWY
PV
AT

PRI

INKA AT

N ZZA IR
A AR
AT NY
KXY/

A AN 2
e ANNZ

I5& KL

S FATIINNNS
Sk AT

P W MINN
RS TN

™
N

:§§§?,
KA

X
el

COT 5407

,.\w\ m /&\\ “ — _._

BEH NI
D VW
SRR/
K G
2 SR __.\“
PN K YNV

9/6/07

Animation Demos

http://cg.scs.carleton.ca/~morin/misc/sortalg/

9/6/07 COT 5407 24

Comparing O(n?) Sorting Algorithms

+ InsertionSort and SelectionSort (and ShakerSort) are

roughly twice as fast as BubbleSort for small files.
+ InsertionSort is the best for very small files.

* O(n?) sorting algorithms are NOT useful for large random
files.

+ If comparisons are very expensive, then among the O(n?)
sorting algorithms, insertionsort is best.

+ If data movements are very expensive, then among the O(n?)
sorting algorithms, ?? is best.

9/6/07 COT 5407 25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

sorted sequence

1 2 2 3 4 3 6 7
/ merge \

2 4 5 7 1 2 3 6

merge \ merge

2 5 - 7 3 2 6

1
merg& merge Acrg& merge

5 3 4 7 1 3 s m

initial sequence

Figure 2.4 The operation of merge sort on the array A = (5,2,4,7, 1,3, 2,6). The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

0 UL LIS 6 17 A0 L I 80 10 1012 13 W 15 06 1] B0 10 10 1203 14 15 16 11
e gt A JI A...l2234it
k k [k
1 21 43 1 2 1 4 5 1 2 3 4 5§ | 21 4 § :
Li2]4{517] R[1[2]3]6]w L{2]4]5]7]e R.Zf{ﬁm L3345 123458 FERERE .n;s
i j !] L] oo LR ¢ s
(W) ’ J ’ /
(e) il
B9 10 011 12 13 M4 15 16 17 B0 Wi niusmn
A'“”—Z ""'IH-Z B9 1011213 IS 16 1]
: ¢ NNARDE
145 P 1408 | 1 4 5 2) 45
5[7]= R-E.’iﬁw LlJH?u * 3 [6]=
; |

L i? o f b
(c) (d) i, :

() (h)
Figure 2.3 The operation of lines 10-17 in the call MERGE(A. 9, 12, 16), when the subarray
A[9..16] contains the sequence (2, 4, 5,7, 1,2, 3, 6}, Alter copying and inserting sentinels, the
array L contains (2,4, 5, 7, oc), and the array R contains {1, 2, 3, 6, oq). Lightly shaded positions § 0 10 011213 14 15 16 17
in A contain their final values, and lightly shaded positions in L and R contain values that have yel A TE2(2(3141516]71.
to be copied back into A. Taken together, the lightly shaded positions always comprise the values |

originally in A[9.. 16}, along with the two sentinels. Heavily shaded positions in A contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (al-h) The arrays A, L, and R, and their respective indices £, i, and i
prior (o each iteration of the loop of lines 12-17. (i) The arrays and indices at termination, At this
point,the subarray in A[9., 16] i sorted, and the two sentinels in £ and R are the only two elements
In these arrays that have not been copied into A.

()

9/6/07

Convriaht © The McGraw-Hill Comnanies. Inc. Permission reauired for renroduction or disnlav.

MERGE(A, p,q,r)

= D =

o0 1 O Lh

Ne

10
11
12
13
14
15
16
17

n<«<—q—p-+1

Ny <t —qg

create arrays L|1..n;+ 1]and R[1..n, + 1]

fori < 1 to n,
do L[i] < A[p +1 — 1]
for | < 1ton,
do R[j] < Alg + j]
Liny+ 1] « o
R[n, + 1] <« oo
] <«]
J <1
fork < ptor
doif L[i] < R[J]
then A[k] < LJi]
I <— 1+ 1
else A[k] < R]|/]
J < J+1

Assumption: Array
A is sorted from
positions p to g
and also from
positions gq+1 tor.

28

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MERGE-SORT (A, p, r)
if p <r
then ¢ < [(p +7)/2]
MERGE-SORT(A, p, q)
MERGE-SORT (A, g + 1, r)
MERGE(A, p, q,r)

N 5 W o =

9/6/07 COT 5407 29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tir) on on
T(ni2) Tinf2) cmf2 cnf2
T{ni4) Tinfd) Tin/4) Tinid)
(5] (b} (c)
\ CH e e sl O
cnf2 CHI2 wvssmsmennonailie o
| cnfd chif4 el CR4 e e en

AR

— S
L — _
i
(d) Total: cn lg n + cn
Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn.

Part (a) shows T(n), which is progressively expunded in (b)~(d) to form the recursion tree. The
fully expanded tree in part (d) has Ig s + 1 levels (i.c., it has height 1g #, as indicated), and each level
9/6/07 contributes a total cost of cn. The total cost, therefore, is o lgn + en, which is ©(n lg n).

Problems to think about!

What is the least humber of comparisons you need to sort a
list of 3 elements? 4 elements? 5 elements?

How to arrange a tennis tournament in order to find the
tournament champion with the least number of matches?
How many tennis matches are needed?

9/6/07 COT 5407 31

