
11/1/07 COT 5407 1

Dynamic Programming vs. Divide-&-conquer

• Divide-&-conquer works best when all subproblems are independent. So, pick
partition that makes algorithm most efficient & simply combine solutions to
solve entire problem.

• Dynamic programming is needed when subproblems are dependent; we don’t know
where to partition the problem.

For example, let S1= {ALPHABET}, and S2 = {HABITAT}.

Consider the subproblem with S1 = {ALPH}, S2 = {HABI}.

Then, LCS (S1 , S2) + LCS (S1-S1 , S2-S2) LCS(S1, S2)

• Divide-&-conquer is best suited for the case when no “overlapping subproblems”
are encountered.

• In dynamic programming algorithms, we typically solve each subproblem only
once and store their solutions. But this is at the cost of space.

11/1/07 COT 5407 2

Dynamic programming vs Greedy

1. Dynamic Programming solves the sub-problems bottom up. The problem can’t be

solved until we find all solutions of sub-problems. The solution comes up when

the whole problem appears.

Greedy solves the sub-problems from top down. We first need to find the

greedy choice for a problem, then reduce the problem to a smaller one. The

solution is obtained when the whole problem disappears.

2. Dynamic Programming has to try every possibility before solving the problem. It

is much more expensive than greedy. However, there are some problems that

greedy cannot solve while dynamic programming can. Therefore, we first try

greedy algorithm. If it fails then try dynamic programming.

11/1/07 COT 5407 3

Fractional Knapsack Problem

• Burglar’s choices:

Items: x1, x2, …, xn

Value: v1, v2, …, vn

Max Quantity: q1, q2, …, qn

Weight per unit quantity: w1, w2, …, wn

Getaway Truck has a weight limit of B.

Burglar can take “fractional” amount of any item.

How can burglar maximize value of the loot?

• Greedy Algorithm works!

Pick the maximum possible quantity of highest value per weight item.
Continue until weight limit of truck is reached.

11/1/07 COT 5407 4

0-1 Knapsack Problem

• Burglar’s choices:

Items: x1, x2, …, xn

Value: v1, v2, …, vn

Weight: w1, w2, …, wn

Getaway Truck has a weight limit of B.

Burglar cannot take “fractional” amount of item.

How can burglar maximize value of the loot?

• Greedy Algorithm does not work! Why?

• Need dynamic programming!

11/1/07 COT 5407 5

0-1 Knapsack Problem

• Subproblems?

– V[j, L] = Optimal solution for knapsack problem assuming a truck of weight
limit L and choice of items from set {1,2,…, j}.

– V[n, B] = Optimal solution for original problem

– V[1, L] = easy to compute for all values of L.

• Table of solutions?

– V[1..n, 1..B]

• Ordering of subproblems?

– Row-wise

• Recurrence Relation? [Either xj included or not]

– V[j, L] = max { V[j-1, L],

 vj + V[j-1, L-wj] }

11/1/07 COT 5407 6

1-d, 2-d, 3-d Dynamic Programming

• Classification based on the dimension of the table used to

store solutions to subproblems.

• 1-dimensional DP

– Activity Problem

• 2-dimensional DP

– LCS Problem

– 0-1 Knapsack Problem

– Matrix-chain multiplication

• 3-dimensional DP

– All-pairs shortest paths problem

11/1/07 COT 5407 7

Graphs

• Graph G(V,E)

• V Vertices or Nodes

• E Edges or Links: pairs of vertices

• D Directed vs. Undirected edges

• Weighted vs Unweighted

• Graphs can be augmented to store extra info (e.g., city population, oil
flow capacity, etc.)

• Paths and Cycles

• Subgraphs G’(V’,E’), where V’ is a subset of V and E’ is a subset of E

• Trees and Spanning trees

11/1/07 COT 5407 8

11/1/07 COT 5407 9

Graph Traversal

• Visit every vertex and every edge.

• Traversal has to be systematic so that no vertex or edge is

missed.

• Just as tree traversals can be modified to solve several

tree-related problems, graph traversals can be modified to

solve several problems.

11/1/07 COT 5407 10

11/1/07 COT 5407 11

DFS(G)

1. For each vertex u V[G] do

2. color[u] WHITE

3. [u] NIL

4. Time 0

5. For each vertex u V[G] do

6. if color[u] = WHITE then

7. DFS-VISIT(u)

Depth

First

Search

DFS-VISIT(u)

1. VisitVertex(u)

2. Color[u] GRAY

3. Time Time + 1

4. d[u] Time

5. for each v Adj[u] do

6. VisitEdge(u,v)

7. if (v [u]) then

8. if (color[v] = WHITE) then

9. [v] u

10. DFS-VISIT(v)

11. color[u] BLACK

12. F[u] Time Time + 1

