Dynamic Programming vs. Divide-&-conquer

Divide-&-conquer works best when all subproblems are independent. So, pick
partition that makes algorithm most efficient & simply combine solutions to
solve entire problem.

Dynamic programming is needed when subproblems are dependent; we don't know
where to partition the problem.

For example, let S;= {ALPHABET}, and S, = {HABITAT].

Consider the subproblem with S;' = {ALPH}, S,' = {HABI}.

Then, LCS (S,’, S,) + LCS (S,-S,, S,-S,’) # LCS(S,, S.,)

Divide-&-conq_uer is best suited for the case when no ;ove;lapping subproblems”
are encountered.

In dynamic programming algorithms, we typically solve each subproblem only
once and store their solutions. But this is at the cost of space.

11/1/07 COT 5407 1

Dynamic programming vs Greedy

. Dynamic Programming solves the sub-problems bottom up. The problem can't be
solved until we find all solutions of sub-problems. The solution comes up when
the whole problem appears.

Greedy solves the sub-problems from top down. We first need to find the
greedy choice for a problem, then reduce the problem to a smaller one. The
solution is obtained when the whole problem disappears.

. Dynamic Programming has to try every possibility before solving the problem. It
is much more expensive than greedy. However, there are some problems that
greedy cannot solve while dynamic programming can. Therefore, we first try
greedy algorithm. If it fails then try dynamic programming.

11/1/07 COT 5407 2

Fractional Knapsack Problem

Burglar's choices:

Items: x;, x5, ..., X,

Value: vy, v,, ..., v,

Max Quantity: g, g5, ..., q,

Weight per unit quantity: w,, w,, .., w,

Getaway Truck has a weight limit of B.

Burglar can take "fractional” amount of any item.
How can burglar maximize value of the loot?
Greedy Algorithm works!

Pick the maximum possible quantity of highest value per weight item.
Continue until weight limit of truck is reached.

11/1/07 COT 5407 3

0-1 Knapsack Problem

* Burglar's choices:

Items: x, x,, ..., X,

Value: vy, v,, ..., v,

Weight: wy, w,, ..., w,

Getaway Truck has a weight limit of B.
Burglar cannot take “"fractional” amount of item.
How can burglar maximize value of the loot?
* Greedy Algorithm does not work! Why?

* Need dynamic programming

11/1/07 COT 5407

0-1 Knapsack Problem

Subproblems?

- V[j, L] = Optimal solution for knapsack problem assuming a truck of weight
limit L and choice of items from set {1,2,.., j}.

- V[n, B] = Optimal solution for original problem

- VI[1, L] = easy to compute for all values of L.
Table of solutions?

- V[1l.n, 1.B]
Ordering of subproblems?

- Row-wise
Recurrence Relation? [Either x; included or not]

- V[j, L] = max { V[j-1, L],

v, + V[j-1, L-w;])

11/1/07 COT 5407 3)

1-d, 2-d, 3-d Dynamic Programming

- Classification based on the dimension of the table used to

store solutions to subproblems.
1-dimensional DP
- Activity Problem

2-dimensional DP

- LCS Problem

- 0-1 Knapsack Problem

- Matrix-chain multiplication

3-dimensional DP
- All-pairs shortest paths problem

11/1/07 COT 5407 6

Graphs

Graph G(V,E)

V Vertices or Nodes

E Edges or Links: pairs of vertices
D Directed vs. Undirected edges
Weighted vs Unweighted

Graphs can be augmented to store extra info (e.g., city population, oil
flow capacity, etc.)

Paths and Cycles
Subgraphs G'(V' E'), where V' is a subset of V and E' is a subset of E
Trees and Spanning trees

11/1/07 COT 5407 7

1 2 3 45

1 [-2 3-[5]/] 1lo1 00 1]

@ — R L D i e [B g A P 2(3.0 3. & 1

S 3 - a7 310 1 0 1 0

4l =2 5] H3[/] 40 1 1 0 1

659 (4) s|—la] 1] 2]/] 5|11 101 0
(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five
vertices and seven edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix rep-
resentation of G,

1 23 456

1| —2] Pla]/] 10101 00

2| {3]7] 2/0 00 0 1 0

(87 30 —+6] P5]/] 3/0 00 0 1 1

4| 2]/ 410 1.0 0 0 0

5 =4 /] 510 00100

—&) (6 6| +6]/] 6/0 00 0 0 1
(a) (b) (c)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices
and eight edges. (b) An adjacency-list representation of G'. (¢) The adjacency-matrix representation
of G.

11/1/07 COT 5407

Graph Traversal

Visit every vertex and every edge.

Traversal has to be systematic so that no vertex or edge is
missed.

Just as tree traversals can be modified to solve several
tree-related problems, graph traversals can be modified to

solve several problems.

11/1/07 COT 5407 9

11/1/07

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Vertices are timestamped by discovery time/finishing time.

COT 5407 10

DFS(6)

NooswN e

For each vertex u € V[G] do
color[u] < WHITE
n[u] <= NIL
Time < 0O
For each vertex u € V[G] do
if color[u] = WHITE then
DFS-VISIT(u)

Depth
First
Search

11/1/07

0 ONO O A WN S

—
=

11.
12.

DFS-VISIT(u)

VisitVertex(u)
Color[u] < GRAY
Time < Time + 1
d[u] < Time
for each v € Adj[u] do
VisitEdge(u,v)
if (v = x[u]) then
if (color[v] = WHITE) then
n[v] < u
DFS-VISIT(v)
color[u] < BLACK
F[u] < Time < Time + 1

COT 5407

11

