Graphs

Graph G(V,E)

V Vertices or Nodes

E Edges or Links: pairs of vertices
D Directed vs. Undirected edges
Weighted vs Unweighted

Graphs can be augmented to store extra info (e.g., city population, oil
flow capacity, etc.)

Paths and Cycles
Subgraphs G'(V' E'), where V' is a subset of V and E' is a subset of E
Trees and Spanning trees

11/6/07 COT 5407 1

1 2 3 45

1 [-2 3-[5]/] 1lo1 00 1]

@ — R L D i e [B g A P 2(3.0 3. & 1

S 3 - a7 310 1 0 1 0

4l =2 5] H3[/] 40 1 1 0 1

659 (4) s|—la] 1] 2]/] 5|11 101 0
(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five
vertices and seven edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix rep-
resentation of G,

1 23 456

1| —2] Pla]/] 10101 00

2| {3]7] 2/0 00 0 1 0

(87 30 —+6] P5]/] 3/0 00 0 1 1

4| 2]/ 410 1.0 0 0 0

5 =4 /] 510 00100

—&) (6 6| +6]/] 6/0 00 0 0 1
(a) (b) (c)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices
and eight edges. (b) An adjacency-list representation of G'. (¢) The adjacency-matrix representation
of G.

11/6/07 COT 5407

Graph Traversal

Visit every vertex and every edge.

Traversal has to be systematic so that no vertex or edge is
missed.

Just as tree traversals can be modified to solve several
tree-related problems, graph traversals can be modified to

solve several problems.

11/6/07 COT 5407 3

11/6/07

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Vertices are timestamped by discovery time/finishing time.

COT 5407

DFS(6)

NooswN e

For each vertex u € V[G] do
color[u] < WHITE
n[u] <= NIL
Time < 0O
For each vertex u € V[G] do
if color[u] = WHITE then
DFS-VISIT(u)

Depth
First
Search

11/6/07

0 ONO O A WN S

—
=

11.
12.

DFS-VISIT(u)

VisitVertex(u)
Color[u] < GRAY
Time < Time + 1
d[u] < Time
for each v € Adj[u] do
VisitEdge(u,v)
if (v = x[u]) then
if (color[v] = WHITE) then
n[v] < u
DFS-VISIT(v)
color[u] < BLACK
F[u] < Time < Time + 1

COT 5407

11/6/07

(a)

(b)

1 2 3 45 6 7 8 9 10111213 14 1516
(s 2 @ @0 Nwwz @y Mwri

()

Figure 22.5 Properties of depth-first search. (a) The result of a depth-first search of a directed
graph. Vertices are timestamped and edge types are indicated as in Figure 22.4. (b) Intervals for
the discovery time and finishing time of each vertex correspond to the parenthesization shown. Each
rectangle spans the interval given by the discovery and finishing times of the corresponding vertex.
Tree edges arc shown. If two intervals overlap, then one is nested within the other, and the vertex
corresponding to the smaller interval is a descendant of the vertex corresponding to the larger. (c) The
graph of part (a) redrawn with all tree and forward edges going down within a depth-first tree and all
back edges going up from a descendant to an ancestor.

v W X

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. Within each vertex u is shown d[u]. The queue @ is shown at the beginning
of each iteration of the while loop of lines 10-18. Vertex distances are shown next to vertices in the
queue,

11/6/07 COT 5407

BFS(6G,s)
For each vertex u €V[G] - {s} do
color[u] < WHITE
dlu] <

nm[u] < NIL
Color[u] < GRAY
D[s]< 0
n[s] < NIL

Breadth

First -
ENQUEUE(Q,s)

SearCh 10. While Q= @ do

11. u < DEQUEVE(Q)

VPN O W N e

12. VisitVertex(u)

13. for each v € Adj[u] do

14. VisitEdge(u,v)

15. if (color[v] = WHITE) then
16. color[v] < GRAY

17. dlv] < d[u]+1

18. n[v] < u

19. ENQUEUE(Q,v)

20. color[u] < BLACK

11/6/07

