
11/13/07 COT 5407 1

11/13/07 COT 5407 2

Graph Traversal

• Visit every vertex and every edge.

• Traversal has to be systematic so that no vertex or edge is

missed.

• Just as tree traversals can be modified to solve several

tree-related problems, graph traversals can be modified to

solve several problems.

11/13/07 COT 5407 3

11/13/07 COT 5407 4

DFS(G)

1. For each vertex u V[G] do

2. color[u] WHITE

3. [u] NIL

4. Time 0

5. For each vertex u V[G] do

6. if color[u] = WHITE then

7. DFS-VISIT(u)

Depth

First

Search

DFS-VISIT(u)

1. VisitVertex(u)

2. Color[u] GRAY

3. Time Time + 1

4. d[u] Time

5. for each v Adj[u] do

6. VisitEdge(u,v)

7. if (v [u]) then

8. if (color[v] = WHITE) then

9. [v] u

10. DFS-VISIT(v)

11. color[u] BLACK

12. F[u] Time Time + 1

11/13/07 COT 5407 5

11/13/07 COT 5407 6

11/13/07 COT 5407 7

BFS(G,s)

1. For each vertex u V[G] – {s} do

2. color[u] WHITE

3. d[u]

4. [u] NIL

5. Color[u] GRAY

6. D[s] 0

7. [s] NIL

8. Q

9. ENQUEUE(Q,s)

10. While Q do

11. u DEQUEUE(Q)

12. VisitVertex(u)

13. for each v Adj[u] do

14. VisitEdge(u,v)

15. if (color[v] = WHITE) then

16. color[v] GRAY

17. d[v] d[u] + 1

18. [v] u

19. ENQUEUE(Q,v)

20. color[u] BLACK

Breadth

First

Search

11/13/07 COT 5407 8

Figure 14.33
An activity-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

11/13/07 COT 5407 9

Figure 14.30A
A topological sort. The conventions are the same as those in Figure 14.21

(continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

11/13/07 COT 5407 10

Figure 14.30B
A topological sort. The conventions are the same as those in

Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

11/13/07 COT 5407 11

Figure 14.31A
The stages of acyclic graph algorithm. The conventions are the same as

those in Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

11/13/07 COT 5407 12

Figure 14.31B
The stages of acyclic graph algorithm. The conventions are the same as

those in Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

11/13/07 COT 5407 13

Figure 14.34
An event-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

11/13/07 COT 5407 14

Figure 14.35
Earliest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

11/13/07 COT 5407 15

Figure 14.36
Latest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

11/13/07 COT 5407 16

Figure 14.37
Earliest completion time, latest completion time, and slack (additional edge

item)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

11/13/07 COT 5407 17

Connectivity

• A (simple) undirected graph is connected if there exists a path between
every pair of vertices.

• If a graph is not connected, then G’(V’,E’) is a connected component of
the graph G(V,E) if V’ is a maximal subset of vertices from V that
induces a connected subgraph. (What is the meaning of maximal?)

• The connected components of a graph correspond to a partition of the
set of the vertices. (What is the meaning of partition?)

• How to compute all the connected components?

– Use DFS or BFS.

11/13/07 COT 5407 18

Minimum Spanning Tree

11/13/07 COT 5407 19

11/13/07 COT 5407 20

