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Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five
vertices and seven edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix rep-
resentation of G,
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Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices
and eight edges. (b) An adjacency-list representation of G'. (¢) The adjacency-matrix representation
of G.
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Graph Traversal

Visit every vertex and every edge.

Traversal has to be systematic so that no vertex or edge is
missed.

Just as tree traversals can be modified to solve several
tree-related problems, graph traversals can be modified to

solve several problems.
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Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Vertices are timestamped by discovery time/finishing time.
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DFS(6)

NooswN e

For each vertex u € V[G] do
color[u] < WHITE
n[u] <= NIL
Time < 0O
For each vertex u € V[G] do
if color[u] = WHITE then
DFS-VISIT(u)

Depth
First
Search

11/13/07

0 ONO O A WN S

—
=

11.
12.

DFS-VISIT(u)

VisitVertex(u)
Color[u] < GRAY
Time < Time + 1
d[u] < Time
for each v € Adj[u] do
VisitEdge(u,v)
if (v = x[u]) then
if (color[v] = WHITE) then
n[v] < u
DFS-VISIT(v)
color[u] < BLACK
F[u] < Time < Time + 1
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Figure 22.5 Properties of depth-first search. (a) The result of a depth-first search of a directed
graph. Vertices are timestamped and edge types are indicated as in Figure 22.4. (b) Intervals for
the discovery time and finishing time of each vertex correspond to the parenthesization shown. Each
rectangle spans the interval given by the discovery and finishing times of the corresponding vertex.
Tree edges arc shown. If two intervals overlap, then one is nested within the other, and the vertex
corresponding to the smaller interval is a descendant of the vertex corresponding to the larger. (c) The
graph of part (a) redrawn with all tree and forward edges going down within a depth-first tree and all
back edges going up from a descendant to an ancestor.
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Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. Within each vertex u is shown d[u]. The queue @ is shown at the beginning
of each iteration of the while loop of lines 10-18. Vertex distances are shown next to vertices in the
queue,
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BFS(6G,s)
For each vertex u €V[G] - {s} do
color[u] < WHITE
dlu] <

nm[u] < NIL
Color[u] < GRAY
D[s]< 0
n[s] < NIL

Breadth

First -
ENQUEUE(Q,s)

SearCh 10. While Q= @ do

11. u < DEQUEVE(Q)

VPN O W N e

12. VisitVertex(u)

13. for each v € Adj[u] do

14. VisitEdge(u,v)

15. if (color[v] = WHITE) then
16. color[v] < GRAY

17. dlv] < d[u]+1

18. n[v] < u

19. ENQUEUE(Q,v)

20. color[u] < BLACK
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Figure 14.33
An activity-node graph
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Figure 14.30A

A topological sort. The conventions are the same as those in Figure 14.21
(continued).
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Figure 14.30B

A topological sort. The conventions are the same as those in
Figure 14.21.
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Figure 14.31A

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).
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Figure 14.31B

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.
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Figure 14.34
An event-node graph
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Figure 14.35

Earliest completion times
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Figure 14.36

Latest completion times
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Figure 14.37

Earliest completion time, latest completion time, and slack (additional edge
item)
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Connectivity

A (simple) undirected graph is connected if there exists a path between
every pair of vertices.

If a graph is not connected, then G'(V',E') is a connected component of
the graph G(V,E) if V' is a maximal subset of vertices from V that
induces a connected subgraph. (What is the meaning of maximal?)

The connected components of a graph correspond to a partition of the
set of the vertices. (What is the meaning of partition?)

How to compute all the connected components?
- Use DFS or BFS.
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Minimum Spanning Tree

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown,
and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This
minimum spanning tree is not unique: removing the edge (b, ¢) and replacing it with the edge (a. k)
yields another spanning tree with weight 37.

COT 5407

18



11/13/07

Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The edges are considered by the algorithm in sorted order by
weight. An arrow points to the edge under consideration at each step of the algorithm. If the edge
joins two distinct trees in the forest, it is added to the forest, thereby merging the two trees.
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