
COT 5407:Introduction to Algorithms
Author and Copyright: Giri Narasimhan

Florida International University
Lecture 1: August 28, 2007.

1 Introduction

The field of algorithms is the bedrock on which all of computer science rests. Would you
jump into a business project without understanding what is in store for you, without know-
ing what business strategies are needed, without understanding the nature of the market,
and without evaluating the competition and the availability of skilled available workforce?
In the same way, you should not undertake writing a program without thinking out a strat-
egy (algorithm), without theoretically evaluating its performance (algorithm analysis), and
without knowing what resources you will need and you have available.

While there are broad principles of algorithm design, one of the the best ways to learn
how to be an expert at designing good algorithms is to do an extensive survey of “case
studies”. It provides you with a storehouse of strategies that have been useful for solving
other problems. When posed with a new problem, the first step is to “model” your problem
appropriately and cast it as a problem (or a variant) that has been previously studied or that
can be easily solved. Often the problem is rather complex. In such cases, it is necessary to
use general problem-solving techniques that one usually employs in modular programming.
This involves breaking down the problem into smaller and easier subproblems. For each
subproblem, it helps to start with a skeleton solution which is then refined and elaborated
upon in a stepwise manner.

Once a strategy or algorithm has been designed, it is important to think about several
issues: why is it correct? does is solve all instances of the problem? is it the best possible
strategy given the resource limitations and constraints? if not, what are the limits or bounds
on the amount of resources used? are improved solutions possible?

2 History of Algorithms

It is important for you to know the giants of the field, and the shoulders on which we all
stand in order to see far. Besides laying down the foundations of geometry, the Greek math-
ematician, Euclid (ca. 300 BC) is best known for his gcd algorithm, He showed that the
gcd of two natural numbers a and b (a ≥ b) is the same as the gcd of the numbers (a mod b)
(i.e., the remainder when you divide a by b) and b. This observation immediately leads to
a simple algorithm for computing the gcd of natural numbers. An Indian mathematician,
Bhaskara (ca. 6th century AD), is credited with inventing the decimal system of counting1.
Al Khwarizmi (ca. 9th century), from Baghdad, wrote a book detailing how numbers can
be added, subtracted, multiplied, and divided. He also explained how to compute square

1It is said that the most important contribution of the ancient Indian thinkers was a “zero”.

1



roots and to compute the value of π. The nineteenth century English inventor, Charles
Babbage, is considered the father of the computer. His achievement was the construction
of mechanical, programmable computers, which he called the difference engine and the ana-
lytical engine. Alan Turing, was a twentieth century English mathematician, who proposed
the Turing model of computation, a theoretical model of an algorithm that solves a problem.
His formalization paved the way for the field of theory of computation and computational
complexity theory. John von Neumann, a Hungarian-born genius, wrote influential papers
in the areas of physics, mathematics, logic, game theory, and computer science. The von
Neumann architecture including the stored program concept is largely a result of his work.
In the field of algorithms, he is credited with inventing the Merge Sort and for initiating the
study of pseudo-random number generators. In the last 50 years, the field of algorithms has
seen many influential researchers including Edsger Dijkstra, Donald Knuth, Michael Rabin,
Robert Floyd, Richard Karp, John Hopcroft, Robert Tarjan, Andrew Yao, and many more.

3 Fun “warm-up” problems

The following are a few problems that require very little prior knowledge of algorithms. The
hope is that these problems will get you excited about the field and also get you thinking
about the issues that are important for algorithm design.

3.1 Searching in bounded and unbounded sets

Consider the following problem. I have thought of an integer x that is known to lie in the
range of integers a through b. Your task is to guess this number with the fewest number of
guesses. (Translation: input is a and b, output is the correct value of x.) You are allowed to
ask questions of the form:“Is the number x equal to P?” or “Is the number x greater than
P?”; these will elicit a yes/no answer.

I recommend that for every algorithm, the first thing to do is to design a naive algorithm
so that you know immediately what you need to “beat”. Usually, the naive algorithm is
simplistic and unsophisticated and involves finding the size of the search space.

Clearly, in this case, the size of the search space is n = b− a + 1. For each value of P in
the range of a through b, asking a question of the form “Is the number x equal to P?” will
find the correct solution. The naive search strategy employed above is the sequential search
strategy. The number of questions will be n in the worst case. The standard question you
have to train yourself to ask is: can we do better?

By now, if you have had a course on data structures or advanced programming, you
would have guessed that Binary Search will do the trick. The idea behind binary search is
simple. By choosing P = d(b− a)/2e and asking the question “Is the number x greater than
P?”, regardless of whether the answer is yes or no, the size of the search space is reduced
by a half. Consequently, you will require dlog2 ne questions in the worst case. (Why?) Thus
the number of questions is exponentially smaller (what does that mean?) than the number
of questions required by the naive scheme we discussed earlier.

2



Once again, can we do better? It turns out that you cannot. However, the proof is more
involved and will be delayed until our discussion of lower bounds.

If you are letting out a yawn already, it is time to wake you up with a harder question.
Here is a modified problem. I have thought of a positive integer x. No upper bounds are
provided for the value of x. Your task is to guess this number with the fewest number of
guesses. The type of questions you are allowed to ask remains the same.

The problem has changed. But exactly how? What is the size of the search space? It
seems that it is infinite, i.e., the size of the set of positive integers. Is there even a naive
algorithm? Once again, a naive solution is to perform sequential search. For each value of P
starting with P = 1 and incrementing it by 1 after every failed attempt, ask the question “Is
the number x equal to P?”. This will eventually stop and find the correct solution. Is this an
“algorithm” for the problem at hand? (You need to check the definition of an algorithms.)
The search strategy employed is sequential search. The number of questions will be x in the
worst case. So, can we do better? What strategy should we employ?

If you replied binary search again, then you are wrong! (Why?) This has been coined
the gambler’s strategy. We let P take the following sequence of values: 1, 2, 4, . . . , 2m, while
asking the question “Is the number x greater than P?”. Eventually 2m ≥ x and the answer
will be yes. Such a search is called the doubling search strategy. We now know that the
number x lies in the range 2m−1 + 1 through 2m. So, binary search can be employed to zone
in on the value x.

How many questions were required. For the first phase of the search, we asked questions
to find the upper bound on x. This requires m = blog xc + 1 in the worst case. The second
phase involves a straightforward binary search and requires m−1 questions. Thus the search
requires a total of 2m−1 = 2blog xc+1 questions in the worst case. The number of questions
is only twice as much as the case when we know the bound.

Can we do better? Oh yes! Our algorithm used doubling search. What happens if we do
a “tripling” search, or a search where the jumps are even larger? But then the second phase
of the search becomes more expensive. Another way to view doubling search is to treat it
as a sequential search for the smallest value m such that 2m ≥ x. So why couldn’t we do
doubling search for m? How far can we take this argument? Try looking for a solution that
runs in roughly log x + log log x number of questions.

3.2 Evaluating polynomials

Back in your College Algebra course, you must have learnt about polynomials. A polynomial
of degree n can be written down as follows:

p(x) = anx
n + an−1x

n−1 + . . . + a1x + a0,

where an, an−1, . . . , a1, a0 are real-valued coefficients of the terms of the polynomial.
Consider the problem of evaluating a polynomial. Thus the input is a sequence of real

coefficients along with an integer value representing the degree of the polynomial, and a real
value X at which the polynomial needs to be evaluated. The output is the real value of the
polynomial at x = X.

3



The naive solution involves computing each of the n+1 terms separately and then adding
them up. Computing the i-th term of the evaluation involves computing aix

i, which involves
making i multiplications. Thus the evaluation of the polynomial would end up requiring
n + (n − 1) + . . . + 1 multiplications and n additions. In other words, this naive solution
requires n additions and n(n + 1)/2 multiplications. If you have taken a class in Computer
Architecture or if you know additions and multiplications are performed by the hardware,
you would know that multiplications are much more expensive than additions. Applications
that require a large number of polynomial evaluations may see tremendous performance
improvements if the number of multiplications performed during polynomial evaluation can
be reduced.

Improving on the naive scheme is easy if you observe that computing xn in the straight-
forward way involves computing x2, x3, . . . , xn−1 as intermediate results. One suggestion is
to store these intermediate values in an array, thus preventing recomputation in later steps.
Such an evaluation scheme will end up with n + 1 + 1 + . . . + 1 = 2n − 1 multiplications.
The first term is n because xn needs to be computed and then multiplied to an. This re-
vised scheme also uses n additions. However, it uses an extra array of size n to store the
intermediate results.

A further improvement is possible if you know about Horner’s Rule. Using this rule, the
polynomial can be rewritten as follows:

p(x) = ((· · · ((anx + an−1)x + an−2) · · · + a1)x + a0).

Using a standard evaluation procedure will start with the innermost parentheses, thus first
evaluating (anx + an−1), which involves 1 multiplication and 1 addition. This intermediate
results is then stored, multiplied by x and added to an−2, which requires an additional
multiplication and addition operation. It is clear that the entire evaluation only requires n
additions and n multiplications, and requires storage for only 1 intermediate value at any
given time. Applications that require a large number of polynomial evaluations will certainly
show enormous performance improvement using this improved scheme.

3.3 The paparazzi and the celebrity

Say that you are a photographer and a budding paparazzo2. You are heading to a party
where, gossip has it that a “celebrity” may make an appearance. The problem is that you
don’t know what this celebrity looks like. The definition of a celebrity in the paparazzi circles
is “one who knows nobody (at the party) and one that everyone (at the party) knows”. The
only way to find the celebrity (if one is present) is to go around asking a lot of questions. You
wish to accomplish the task with the fewest number of questions. The only type of questions
you are allowed to ask at the party is to approach person A, point to another person B, and
ask if (s)he knows B. The only allowable answers are YES and NO, and nobody at the party

2Paparazzo was the last name of a photographer in the film La Dolce Vita, by Federico Fellini, the great
Italian director. You are probably familiar with the plural form of this word, namely “paparazzi”.

4



has a reason to lie to you. What is the strategy to find the celebrity in the fewest number
of questions.

Assume that there are n people attending the party (other than yourself). We have been
told that the celebrity may or may not make an appearance. So it is possible there is one
celebrity at the party or there are none present. It is easy to see that there cannot be two
celebrities at the party. (Why?) The obvious “naive” scheme is to approach every person
at the party and ask this person a question about every other person at the party. This
generates a total of n(n − 1) (i.e., O(n2)) questions and is guaranteed to find the celebrity
at the end of the process. Clearly, the aim of this scheme is to obtain complete information
by asking questions before figuring out the identity of the celebrity.

You have probably heard of the algorithmic strategy called Divide-and-Conquer. If you
were to use this strategy, then you would partition the party into two equal-sized groups (say
the “men” and the “women”). You would solve it separately on the two partitions. This
would result in two potential candidates, one from each partition. You would then be left
with verifying if either of these two candidates is a celebrity. This would end up generating
O(n log n) questions, as will be discussed later.

Once again, we ask whether we can do better. To see the improved solution, here’s a hint:
how many questions do you need to spot a “non-celebrity”? Even if you are able to answer
that question, how does it help you? How many questions does your best strategy require?
It should be O(n). You should also try to figure out the constants in your expression for the
number of questions asked. Can you prove that the algorithm is correct. In other words,
if you end up figuring out that person X is a celebrity, does he satisfy the definition of a
celebrity?

4 Summary

The “fun” problems discussed above were meant to be challenging, but not difficult. The
pattern should be obvious. For many problems, it is usually easy to design a naive solution,
a trivial, brute-force solution that is guaranteed to give you the correct answer. The naive
solution helps to set the stage; it gives you the sense of the solution space that one needs
to search. But it provides no clues to the structure of the solution. None of the special
properties of the problem or the input are exploited. The improved solutions often require
lateral thinking. It often requires you to stare at the problem for a while and to try to
understand it deeply. It often stems from understanding the hurdles to designing more
efficient algorithms. In the search problem, the improvements came from knowing that the
upper bound is critical for applying binary search and that one can search for the upper bound
in a manner similar to the search for the value x. In the polynomial evaluation problem,
the improvements came from the realization that computing xn involves many intermediate
computations that can be reused. In the celebrity problem, the breakthrough came from the
observation that it is easy to spot non-celebrities, and recognizing non-celebrities effectively
reduces the size of the solution space and is hence useful.

5


