FALL 2007: COT 5407 INTRO. TO ALGORITHMS

[HOMEWORK 2; DUE SEP 13 AT START OF CLASS]

General submission guidelines and policies: ADD A SIGNED STATEMENT THAT YOU
HAVE ADHERED TO THE COLLABORATION POLICY FOR THIS CLASS AND THAT WHAT YOU
ARE PRESENTING IS YOUR OWN WORK. Without this statement, your homework will not
be graded.

Problems

8.

10.

11.

12.

(Exercise) Solve these exercises (These will not be graded,; it is enough to provide just
final answers to show you have worked it out): Exercise 7.1-1, p148; Exercise 7.2-2,
pl53; Exercise 7.2-4, p153; Exercise 6.2-1, p132; Exercise 6.3-1, p135; Exercise 6.4-1,
p136; Exercise 6.5-1, p140;

(Regular) Rewrite PARTITION (let’s call the new algorithm PARTITION3) so that it
takes as input an array A, and outputs a 3-partition of the array. In particular, it picks
two pivots (for your implementation, choose them to be the last and the second-to-last
items in the array) = and y, and outputs the array partitionaed into three pieces. In
other words, assuming that x < y, the array output by the algorithm contains all
items smaller than both x and y followed by item x, followed by all items between x
and y, followed by item y, and followed by all items larger than both z and y. The
partition must happen in-place meaning that no additional arrays ought to be used.
Finally, the algorithm should return the locations of the two pivots. Analyze the time
complexity of the algorithm and write down an invariant for the algorithm that would
reflect its correctness.

(Exercise) Given the algorithm PARTITION3, show how the code for algorithm QUICK-
SORT should be changed to use it.

(Regular) Study RANDOMIZED-PARTITION and RANDOMIZED-QUICKSORT from page
154 of your text. Now modify it to implement two new features:

(a) Implement the median-of-3 method for choosing the pivot (described on page
162);

(b) Implement R. Sedgewick’s idea (1978) to avoid recursive calls when the size of the
array is at most k. Set the value of k£ to be 8, which is the cutoff value used in
the 1997 Microsoft C library implementation of Quicksort. Use INSERTIONSORT
for arrays of size at most k. There is no need to show code for INSERTTONSORT.

(Regular) Sorting algorithms are not constrained in the way they treat “equal” items
in the input list. Therefore, if all the items in a list are equal, any permutation of the
inputs is a correct output. A sorting algorithm is said to be stable if the relative order



of any equal items in the input list is not changed in the output list. For example, if
your list contained scores of students in an exam. Say that your input list has Adam
with a score of 78 in location 7, and Alice with a score of 78 in location 11, Then
after a stable sorting based on exam scores, the output list is guaranteed to have Adam
appearing before Alice. An unstable sort provides no such guarantee. The output list
(although it is still sorted) may or may not have Adam appearing before Alice.

In order to show that a sorting algorithm is stable, one would need a mathematical
proof. However, to prove that it is not stable, all we need is a simple “counterexample”.
It should be obvious to you that INSERTIONSORT, BUBBLESORT, and MERGESORT
are stable sorting algorithms (first convince yourself of this). For each of the following
sorting algorithms, state which ones are not stable with the help of simple examples:
SELECTION SORT, QUICKSORT, and HEAPSORT. Devise the smallest example you
can build, if you claim the algorithm is not stable. Write down a brief argument if you
think it is stable. You should consider a sorting algorithm to be stable if the algorithm
given to you in the book or the one given to you in class (or a minor variant thereof)
is stable.



