COT 5407: Introduction to Algorithms

Giri Narasimhan
ECS 254A; Phone: x3748
giri@cis.fiu.edu

http://www.cis.fiu.edu/~giri/teach/5407S17.html
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494
Evaluation

- Exams (2) 40%
- Quizzes 10%
- Homework Assignments 40%
- Semester Project 5%
- Class Participation 5%

http://www.cis.fiu.edu/~giri/teach/5407S17.html
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494
What you should already know …

- Array Lists
- Linked Lists
- Sorted Lists
- Stacks and Queues
- Trees
- Binary Search Trees
- Heaps and Priority Queues
- Graphs
 - Adjacency Lists
 - Adjacency Matrices
- Basic Sorting Algorithms
Celebrity Problem

- A **Celebrity** is one that knows **nobody** and that **everybody** knows.

Celebrity Problem:

INPUT: \(n \) persons with a \(n \times n \) information matrix.

OUTPUT: Find the “celebrity”, if one exists.

MODEL: Only allowable questions are:
- *Does person \(i \) know person \(j \)?*

Only allowable answers are:
- *Yes* or *No*?

- Naive Algorithm: \(O(n^2) \) Questions.
Celebrity Problem (Cont’d)

- Naive Algorithm: $O(n^2)$ Questions.
 - Ask everyone of everyone else for a total of $n(n-1)$ questions
- Using Divide-and-Conquer: $O(n \log_2 n)$ Questions.
 - Divide the people into two equal sets. Solve recursively and find two candidate celebrities from the two halves. Then verify which one (if any) is a celebrity by asking $n-1$ questions to each of them and $n-1$ questions to everyone else about them. This gives a recurrence for the total number of questions asked: $T(n) = 2T(n/2) + 2n$
- Improved solution?
 - How many questions are needed to find a non-celebrity?
 - Hint: What information do you gain by asking one question?
 - Do not proceed to next slide before thinking this through …
Information Gain from One Question

- Assume that you ask person A:
 - Do you know person B?
- If answer is No, then
 - B is clearly not a celebrity
 - Because everyone in the room knows a celebrity
- If answer is Yes, then
 - What can we infer?
 - A is clearly not a celebrity
 - Because a celebrity known nobody in the room
- In each question, we eliminate one person from being a "potential" celebrity
- We need 3(n-1) - 2 questions in the worst case to find the celebrity, if one exists. Why?
Definitions

Abstract Problem: defines a function from any allowable input to a corresponding output

Instance of a Problem: a specific input to abstract problem

Algorithm: well-defined computational procedure that takes an instance of a problem as input and produces the correct output

An Algorithm must **halt** on every input with **correct** output.
Sorting

- Input is a sequence of \(n \) items that can be compared.
- Output is an ordered list of those \(n \) items
 - I.e., a reordering or permutation of the input items such that the items are in sorted order
- **Fundamental** problem that has received a lot of attention over the years.
- Used in many **applications**.
- Scores of **different** algorithms exist.
- Task: To compare algorithms
 - On what bases?
 - Time
 - Space
 - Other
Sorting Algorithms

- Number of Comparisons
- Number of Data Movements
- Additional Space Requirements
Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort
Psuedocode

- Convention about statements
- Indentation
- Comments
- Parameters -- passed by value not reference
- And/or are short-circuiting
Invariants

- Extremely Useful tool for
 - Understanding an algorithm
 - Proving its correctness
 - Analyzing its time and space complexity
How to prove invariants & correctness

- **Initialization**: prove it is true at start
- **Maintenance**: prove it is maintained within iterative control structures
- **Termination**: show how to use it to prove correctness
SelectionSort: Algorithm Invariants

- At end of iteration k, the k smallest items are in their correct location
- NEED TO PROVE THE INVARIANT!!
 - Initialization: Is it true at $k = 0$?
 - Maintenance: Is it true at $k = j$, given that it is true for all values of $k < j$?
- Correctness of Algorithm is often proved by using invariant at termination
 - Termination: What happens at $k = N-1$?
• **InsertionSort:**
 - At the start of iteration k, the first k items are in sorted order

• **BubbleSort:**
 - At end of iteration k, the k smallest items are in their correct location
Algorithm Analysis

- Worst-case time complexity*
- (Worst-case) space complexity
- Average-case time complexity
Worst-Case Analysis

Two Techniques:
1. Count number of steps from pseudocode and add
2. Use invariant, write down recurrence relation and solve it

We will use big-Oh notation to write down time and space complexity (for both worst-case & average-case analyses).
Definition of big-Oh

- We say that \(F(n) = O(G(n)) \),
 - If there exists two positive constants, \(c \) and \(n_0 \), such that
 - For all \(n \geq n_0 \), we have \(F(n) \leq c \cdot G(n) \)

- We say that \(F(n) = \Omega(G(n)) \),
 - If there exists two positive constants, \(c \) and \(n_0 \), such that
 - For all \(n \geq n_0 \), we have \(F(n) \geq c \cdot G(n) \)

- We say that \(F(n) = \Theta(G(n)) \),
 - If \(F(n) = O(G(n)) \) and \(F(n) = \Omega(G(n)) \)

- We say that \(F(n) = \omega(G(n)) \),
 - If \(F(n) = \Omega(G(n)) \), but \(F(n) \neq \Theta(G(n)) \)

- We say that \(F(n) = o(G(n)) \),
 - If \(F(n) = O(G(n)) \), but \(F(n) \neq \Theta(G(n)) \)
Figure 3.1 Graphic examples of the Θ, O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ-notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0, c_1, and c_2 such that to the right of n_0, the value of $f(n)$ always lies between $c_1 g(n)$ and $c_2 g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write $f(n) = O(g(n))$ if there are positive constants n_0 and c such that to the right of n_0, the value of $f(n)$ always lies on or below $c g(n)$. (c) Ω-notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0, the value of $f(n)$ always lies on or above $c g(n)$.
Definition of big-Oh

• We say that
 ▪ $F(n) = O(G(n))$

 If there exists two positive constants, c and n_0, such that
 ▪ For all $n \geq n_0$, we have $F(n) \leq c \cdot G(n)$

• Thus, to show that $F(n) = O(G(n))$, you need to find two positive constants that satisfy the condition mentioned above.

• Also, to show that $F(n) \neq O(G(n))$, you need to show that for any value of c, there does not exist a positive constant n_0 that satisfies the condition mentioned above.
SelectionSort – Worst-case analysis

\textbf{SelectionSort}(\textit{array} A)

1 \quad N \leftarrow \text{length}[A]

2 \quad \textbf{for} \ p \leftarrow 1 \ \textbf{to} \ N

3 \quad \textbf{do} \triangleright \text{Compute} \ j

4 \hspace{1em} j \leftarrow p

5 \quad \textbf{for} \ m \leftarrow p + 1 \ \textbf{to} \ N

6 \hspace{1em} \textbf{do if} (A[m] < A[j])

7 \hspace{1em} \textbf{then} \ j \leftarrow m

8 \hspace{1em} \triangleright \text{Swap} \ A[p] \text{ and} \ A[j]

9 \hspace{1em} \text{temp} \leftarrow A[p]

10 \hspace{1em} A[p] \leftarrow A[j]

11 \hspace{1em} A[j] \leftarrow \text{temp}

N-p comparisons

3 data movements
SelectionSort – Worst-case analysis

```plaintext
SELECTIONSORT(array A)
1  N ← length[A]
2  for p ← 1 to N
do ▷ Compute j
3    j ← p
4    for m ← p + 1 to N
5      do if (A[m] < A[j])
6        then j ← m
▷ Swap A[p] and A[j]
7        temp ← A[p]
9      A[j] ← temp
```

- **Data Movements**
 - $O(N)$

- **# Comparisons**
 - Learn how to do sum of series!
 - $O(N^2)$

- **Time Complexity**
 - $O(N^2)$
SelectionSort – Worst-case space analysis

SelectionSort(array A)

1. \(N \leftarrow \text{length}[A] \)
2. for \(p \leftarrow 1 \) to \(N \)
 do ▷ Compute \(j \)
 \(j \leftarrow p \)
3. for \(m \leftarrow p + 1 \) to \(N \)
 do if \((A[m] < A[j]) \)
 then \(j \leftarrow m \)
▷ Swap \(A[p] \) and \(A[j] \)
4. \(\text{temp} \leftarrow A[p] \)
5. \(A[p] \leftarrow A[j] \)
6. \(A[j] \leftarrow \text{temp} \)

- Temp Space
 - No extra arrays or data structures
 - \(O(1) \)
Average-Case Analysis

- **SelectionSort**
 - Average-case time = Worst-case time

- **InsertionSort**
 - Average-case time < Worst-case time
 - On the average, in the k^{th} iteration, we will only compare $(k-1)/2$ items with the new item
 - However, average-case time complexity
 - Is still $O(N^2)$, even though constants are smaller
EXTRA SLIDES ON SORTING
SelectionSort

<table>
<thead>
<tr>
<th>Array Position</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial State</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>After Iteration 1</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>After Iteration 2</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>After Iteration 3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>After Iteration 4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>After Iteration 5</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
SelectionSort

SelectionSort(array A)
1 \(N \leftarrow \text{length}[A] \)
2 for \(p \leftarrow 1 \) to \(N \)
3 \(\text{do } \) Compute \(j \), the index of the smallest item in \(A[p..N] \)
4 \(\text{Swap } A[p] \) and \(A[j] \)
SelectionSort

SelectionSort(array A)
1 \(N \leftarrow \text{length}[A] \)
2 \textbf{for } p \leftarrow 1 \textbf{ to } N
 \hspace{1em} \textbf{do } \triangleright \text{ Compute } j
3 \hspace{1em} j \leftarrow p
4 \hspace{1em} \textbf{for } m \leftarrow p + 1 \textbf{ to } N
5 \hspace{2em} \textbf{do if } (A[m] < A[j])
6 \hspace{2em} \textbf{then } j \leftarrow m
7 \hspace{1em} \triangleright \text{ Swap } A[p] \text{ and } A[j]
8 \hspace{1em} temp \leftarrow A[p]
9 \hspace{1em} A[p] \leftarrow A[j]
10 \hspace{1em} A[j] \leftarrow temp
SelectionSort: Algorithm Invariants

- iteration k:
 - the k smallest items are in correct location
- NEED TO PROVE THE INVARIANT!!
How to prove invariants & correctness

• **Initialization**: prove it is true at start

• **Maintenance**: prove it is maintained within iterative control structures

• **Termination**: show how to use it to prove correctness
Algorithm Analysis

- Worst-case time complexity
- (Worst-case) space complexity
- Average-case time complexity
SelectionSort

SelectionSort(*array A*)

1. \(N \leftarrow \text{length}[A] \)
2. **for** \(p \leftarrow 1 \) **to** \(N \)

 \(j \leftarrow p \)

 do \(\triangleright \) Compute \(j \)

 3. \(j \leftarrow p \)
4. **for** \(m \leftarrow p + 1 \) **to** \(N \)
5. **do if** \((A[m] < A[j]) \)
6. \(\triangleright \text{then } j \leftarrow m \)
7. \(\triangleright \text{Swap } A[p] \text{ and } A[j] \)
8. \(\text{temp} \leftarrow A[p] \)
10. \(A[j] \leftarrow \text{temp} \)

O\((n^2) \) time
O\((1) \) space
Solving Recurrence Relations

Page 62, [CLR]

<table>
<thead>
<tr>
<th>Recurrence; Cond</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n-1) + O(1)$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-1) + O(n)$</td>
<td>$T(n) = O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = T(n-c) + O(1)$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-c) + O(n)$</td>
<td>$T(n) = O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>$T(n) = O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + O(n); \ a = b$</td>
<td>$T(n) = O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + O(n); \ a < b$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n); \ f(n) = O(n^{\log_b a - \epsilon})$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n); \ f(n) = O(n^{\log_b a})$</td>
<td>$T(n) = \Theta(n^{\log_b a \log n})$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n); \ f(n) = \Theta(f(n)) \ a f(n/b) \leq c f(n)$</td>
<td>$T(n) = \Omega(n^{\log_b a \log n})$</td>
</tr>
</tbody>
</table>
Figure 3.1 Graphic examples of the Θ, O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ-notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0, c_1, and c_2 such that to the right of n_0, the value of $f(n)$ always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write $f(n) = O(g(n))$ if there are positive constants n_0 and c such that to the right of n_0, the value of $f(n)$ always lies on or below $cg(n)$. (c) Ω-notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0, the value of $f(n)$ always lies on or above $cg(n)$.
Insertion-Sort(A)

1 for j ← 2 to length[A]
2 do key ← A[j]
3 ▷ Insert A[j] into the sorted sequence A[1 . . j − 1].
4 i ← j − 1
5 while i > 0 and A[i] > key
6 do A[i + 1] ← A[i]
7 i ← i − 1
8 A[i + 1] ← key

Loop invariants and the correctness of insertion sort
INSERTION-SORT(A)
1 for j ← 2 to length[A]
2 do key ← A[j]
3 ▷ Insert A[j] into the sorted sequence A[1..j − 1].
4 i ← j − 1
5 while i > 0 and A[i] > key
6 do A[i + 1] ← A[i]
7 i ← i − 1
8 A[i + 1] ← key

cost times

$O(n^2)$ time

$O(1)$ space
InsertionSort: Algorithm Invariant

• iteration k:
 - the first k items are in sorted order.
Figure 8.3
Basic action of insertion sort (the shaded part is sorted)

<table>
<thead>
<tr>
<th>Array Position</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial State</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>After a[0..1] is sorted</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>After a[0..2] is sorted</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>After a[0..3] is sorted</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>After a[0..4] is sorted</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>After a[0..5] is sorted</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Figure 8.4

A closer look at the action of insertion sort (the dark shading indicates the sorted area; the light shading is where the new element was placed).

<table>
<thead>
<tr>
<th>Array Position</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial State</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After a[0..1] is sorted</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After a[0..2] is sorted</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After a[0..3] is sorted</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>After a[0..4] is sorted</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>After a[0..5] is sorted</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Bubblesort(A)

1. for $i \leftarrow 1$ to $\text{length}[A]$
2. do for $j \leftarrow \text{length}[A]$ downto $i + 1$
4. then exchange $A[j] \leftrightarrow A[j - 1]$

$O(n^2)$ time

$O(1)$ space
BubbleSort: Algorithm Invariant

- In each pass, every item that does not have a smaller item after it, is moved as far up in the list as possible.
- Iteration k:
 - k smallest items are in the correct location.
Animation Demos

http://cg.scs.carleton.ca/~morin/misc/sortalg/
Comparing $O(n^2)$ Sorting Algorithms

- InsertionSort and SelectionSort (and ShakerSort) are roughly twice as fast as BubbleSort for small files.
- InsertionSort is the best for very small files.
- $O(n^2)$ sorting algorithms are **NOT** useful for large random files.
- If *comparisons* are very expensive, then among the $O(n^2)$ sorting algorithms, Insertionsort is best.
- If *data movements* are very expensive, then among the $O(n^2)$ sorting algorithms, ?? is best.
Problems to think about!

• What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
• How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?