
CAP 5510 / CGS 5166

COT 5407: Introduction
to Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html
1/16/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 9/4/08

!2 Definitions

Abstract Problem: defines a function from any allowable input to a
corresponding output

Instance of a Problem: a specific input to abstract problem
Algorithm: well-defined computational procedure that takes an

instance of a problem as input and produces the correct output
An Algorithm must halt on every input with correct output.

COT 5407 9/4/08

!3 Sorting

! Input is a sequence of n items that can be compared.
! Output is an ordered list of those n items

! I.e., a reordering or permutation of the input items such that the items are in sorted order

! Fundamental problem that has received a lot of attention over the years.
! Used in many applications.
! Scores of different algorithms exist.
! Task: To compare algorithms

! On what bases?
! Time
! Space
! Other

COT 5407 9/4/08

!4 Sorting Algorithms

! Number of Comparisons
! Number of Data Movements
! Additional Space Requirements

COT 5407 9/4/08

!5 Sorting Algorithms

! SelectionSort
! InsertionSort
! BubbleSort
! ShakerSort
! MergeSort
! HeapSort
! QuickSort
! Bucket & Radix Sort
! Counting Sort

COT 5407

Worst-Case Time Analysis

! Two Techniques:
1. Counts and Summations:
! Count number of steps from pseudocode and add

2. Recurrence Relations:
! Use invariant, write down recurrence relation and solve it

! We will use big-Oh notation to write down time and space
complexity (for both worst-case & average-case analyses).

! Compute worst possible time of all input instances of length N.

1/17/17

!6

COT 5407

Definition of big-Oh

! We say that
! F(n) = O(G(n))

 If there exists two positive constants, c and n0, such that
! For all n ≥ n0, we have F(n) ≤ c G(n)

• Thus, to show that F(n) = O(G(n)), you need to find two positive constants
that satisfy the condition mentioned above

• Also, to show that F(n) ≠ O(G(n)), you need to show that for any value of
c, there does not exist a positive constant n0 that satisfies the condition
mentioned above

1/17/17

!7

COT 5407 1/17/17

!8 SelectionSort – Worst-case analysis

N-p comparisons

3 data movements

COT 5407

SelectionSort: Worst-Case Analysis
! Data Movements

! Number of Comparisons

! Time Complexity = O(N2)

1/17/17

!9

Learn how to
sum series

COT 5407

SelectionSort – Space Complexity

1/17/17

!10

! Temp Space
! No extra arrays

or data
structures

! O(1)

CAP 5510 / CGS 5166

Invariant for SelectionSort

! An appropriate invariant has a parameter
related to the progress of the algorithm (e.g.,
iteration number)

! An appropriate invariant helps in proving
algorithm is correct

! “At the end of iteration p, the p smallest items
are in their correct location”

1/16/19

!11

COT 5407

MergeSort

! Divide-and-Conquer Strategy
! Divide array into two sublists of roughly equal length
! Sort each sublist “recursively”
! Merge two sorted lists to get final sorted list

! Assumption: Merging is faster than sorting from fresh
! Most of the work is done in merging
! Process described using a tree

! Top-down process: Divide each list into 2 sublists
! Bottom-up process: Merge two sorted sublists into one sorted sublist

1/17/17

!12

COT 5407 1/17/17

!13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MergeSort

COT 5407 1/17/17

!14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Merge uses an
extra array & lots

of data
movements

COT 5407 1/17/17

!15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assumption: Array A is sorted from [p..q]
and from [q+1..r].

Sentinel Items: Two sentinel items
placed in lists L and R.

Space: Two extra arrays L and R are
used.

Merge: The smaller of the item in L and
item in R is moved to next location in A

Time : O(length of lists)

COT 5407

MergeSort

1/17/17

!16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Time Complexity Recurrence: T(N) = 2T(N/2) + O(N)

CAP 5510 / CGS 5166

Invariants, Continued …

! What is the right invariant for MergeSort?

1/16/19

!17

COT 5407

Solving Recurrence Relations

1/17/17

!18

COT 5407 1/17/17

!19 Solving Recurrences: Recursion-tree method

! Substitution method fails when a good guess is not available
! Recursion-tree method works in those cases

! Write down the recurrence as a tree with recursive calls as the children
! Expand the children
! Add up each level
! Sum up the levels

! Useful for analyzing divide-and-conquer algorithms
! Also useful for generating good guesses to be used by substitution

method

COT 5407 1/17/17

!20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/17/17

!21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/17/17

!22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/17/17

!23 Solving Recurrences using Master
Theorem
Master Theorem:
 Let a,b >= 1 be constants, let f(n) be a function, and let
 T(n) = aT(n/b) + f(n)
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then

! T(n) = Theta(nlog
b

a)

2. If f(n) = Theta(nlog
b

a), then
! T(n) = Theta(nlog

b
a log n)

3. If f(n) = Omega(nlog
b

a+e) for some constant e>0, then
! T(n) = Theta(f(n))

