COT 5407: Introduction to Algorithms

Giri NARASIMHAN

Solving Recurrences using Master Theorem

Master Theorem:

Let $a,b \geq 1$ be constants, let $f(n)$ be a function, and let $T(n) = aT(n/b) + f(n)$

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then

 $T(n) = \Theta(n^{\log_b a})$

2. If $f(n) = \Theta(n^{\log_b a})$, then

 $T(n) = \Theta(n^{\log_b a} \log n)$

3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, then

 $T(n) = \Theta(f(n))$
Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

\[T(n) = 2T(n/2) + n \]

Guess (#1) \(T(n) = O(n) \)

Need \(T(n) \leq cn \) for some constant \(c > 0 \)

Assume \(T(n/2) \leq cn/2 \) Inductive hypothesis

Thus \(T(n) \leq 2cn/2 + n = (c+1)n \)

Our guess was wrong!!
Solving Recurrences by **Substitution**: 2

\[T(n) = 2T(n/2) + n \]

Guess (#2) \(T(n) = O(n^2) \)

Need \(T(n) \leq cn^2 \) for some constant \(c > 0 \)

Assume \(T(n/2) \leq cn^2/4 \) Inductive hypothesis

Thus \(T(n) \leq 2cn^2/4 + n = cn^2/2 + n \)

Works for all \(n \) as long as \(c \geq 2 \) !!

But there is a lot of “slack”
Solving Recurrences by \textbf{Substitution}: 3

\[T(n) = 2T(n/2) + n \]

Guess (\#3) \(T(n) = O(n\log n) \)

Need \(T(n) \leq cn\log n \) for some constant \(c > 0 \)

Assume \(T(n/2) \leq c(n/2)(\log(n/2)) \) \textit{Inductive hypothesis}

Thus \(T(n) \leq 2c(n/2)(\log(n/2)) + n \)

\[\leq \text{cnlogn} - cn + n \leq \text{cnlogn} \]

Works for all \(n \) as long as \(c \geq 1 \) !!

This is the correct guess. WHY?

Show \(T(n) \geq c'n\log n \) for some constant \(c' > 0 \)
Solving Recurrence Relations

<table>
<thead>
<tr>
<th>Recurrence; Cond</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = T(n - 1) + O(1))</td>
<td>(T(n) = O(n))</td>
</tr>
<tr>
<td>(T(n) = T(n - 1) + O(n))</td>
<td>(T(n) = O(n^2))</td>
</tr>
<tr>
<td>(T(n) = T(n - c) + O(1))</td>
<td>(T(n) = O(n))</td>
</tr>
<tr>
<td>(T(n) = T(n - c) + O(n))</td>
<td>(T(n) = O(n^2))</td>
</tr>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>(T(n) = O(n \log n))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + O(n); \ a = b)</td>
<td>(T(n) = O(n \log n))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + O(n); \ a < b)</td>
<td>(T(n) = O(n))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + f(n); \ f(n) = O(n^{\log_b a - \epsilon}))</td>
<td>(T(n) = O(n))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + f(n); \ f(n) = O(n^{\log_b a}))</td>
<td>(T(n) = \Theta(n^{\log_b a \log n}))</td>
</tr>
<tr>
<td>(T(n) = aT(n/b) + f(n); \ f(n) = \Theta(f(n)); \ af(n/b) \leq cf(n))</td>
<td>(T(n) = \Omega(n^{\log_b a \log n}))</td>
</tr>
</tbody>
</table>
QuickSort

MergeSort
- Divide into 2 equal sublists
- Sort each sublist “recursively”
- Merge 2 sorted sublists
 - **Assumption**: Merging is faster than sorting from fresh
- Most of work is done in merging

QuickSort
- **Partition** into 2 sublists using a **pivot**
- Sort each sublist “recursively”
- **Concatenate** 2 sorted sublists
 - **Assumption**: Partition is faster than sorting
- Most of work is done in **partition**
- Process described using a tree
 - **Top-down process**: Partition each list into 2 sublists
 - **Bottom-up process**: Concatenate two sorted sublists into one sorted sublist
Figure 8.10 Quicksort
Partition Algorithm

- Pick a pivot
- Compare each item to a pivot and create two lists:
 - L = list of all items smaller than the pivot
 - R = list of all items larger than the pivot
- One scan through the list is enough, but seems to need extra space
- How to design an in-place partition algorithm!
Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B Result after Partitioning
QuickSort(array A, int p, int r)
1 if (p < r)
2 then q ← Partition(A, p, r)
3 QUICKSORT(A, p, q - 1)
4 QUICKSORT(A, q + 1, r)

To sort array call QUICKSORT(A, 1, length[A]).

Partition(array A, int p, int r)
1 x ← A[r] ▷ Choose pivot
2 i ← p - 1
3 for j ← p to r - 1
4 do if (A[j] ≤ x)
5 then i ← i + 1
7 exchange A[i + 1] ↔ A[r]
8 return i + 1
Time Complexity

- \(T(N) = O(N) + T(N_1) + T(N_2) \)
- On the average, \(N_1 = N_2 = N/2 \)
- Thus, average-case complexity = \(O(N \log N) \)
- Worst-case: Either \(N_1 \) or \(N_2 = 0 \)
 - Thus, \(T(N) = O(N) + T(N - 1) \)
 - \(T(N) = O(N^2) \)
Invariant for Partition

- At the start of iteration j,
 - $A[1..i]$ has elements that are smaller than or equal to pivot x
 - $A[i+1..j-1]$ has elements that are larger than pivot x
 - $A[j..r-1]$ have not yet been processed
 - $A[r]$ has the pivot x

- Try to prove this invariant!
Time Complexity

Recurrence Relation
- \(T(N) = O(N) + T(N_1) + T(N_2) \)

Average-Case Complexity
- On average, \(N_1 = N_2 = N/2 \)
- \(T(N) = O(N) + 2T(N/2) \)
- Thus, average-case complexity = \(O(N \log N) \)

Worst-Case Complexity
- Worst-case: Either \(N_1 \) or \(N_2 \) = 0
- Thus, \(T(N) = O(N) + T(N - 1) \)
- \(T(N) = O(N^2) \)

Warning: Quicksort cannot be used if a sorting algorithm is needed that runs in time \(O(n \log n) \) in the worst case.
Variants of QuickSort

- Choice of Pivot
 - Random choice
 - Median of 3
 - Median

- Avoiding recursion on small subarrays
 - Invoking InsertionSort for small arrays
Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort
Algorithm Analysis

- **Worst-case time complexity**
 - Worst possible time of all input instances of length N
- **(Worst-case) space complexity**
 - Worst possible space of all input instances of length N
- **Average-case time complexity**
 - Average time of all input instances of length N
Upper and Lower Bounds

- **Time Complexity of a Problem**
 - **Difficulty:** Since there can be many algorithms that solve a problem, what time complexity should we pick?
 - **Solution:** Define upper bounds and lower bounds within which the time complexity lies.

- **What is the upper bound on time complexity of sorting?**
 - **Answer:** Since SelectionSort runs in worst-case $O(N^2)$ and MergeSort runs in $O(N \log N)$, either one works as an upper bound.
 - **Critical Point:** Among all upper bounds, the best is the lowest possible upper bound, i.e., time complexity of the best algorithm.

- **What is the lower bound on time complexity of sorting?**
 - **Difficulty:** If we claim that lower bound is $O(f(N))$, then we have to prove that no algorithm that sorts N items can run in worst-case time $o(f(N))$.

Lower Bounds

- It’s possible to prove lower bounds for many comparison-based problems.
- For comparison-based problems, for inputs of length N, if there are $P(N)$ possible solutions, then
 - any algorithm needs $\log_2(P(N))$ to solve the problem.
- Binary Search on a list of N items has at least $N + 1$ possible solutions. Hence lower bound is
 - $\log_2(N+1)$.
- Sorting a list of N items has at least $N!$ possible solutions. Hence lower bound is
 - $\log_2(N!) = O(N \log N)$
- Thus, MergeSort is an optimal algorithm.
 - Because its worst-case time complexity equals lower bound!
Beating the Lower Bound

- **Bucket Sort**
 - Runs in time $O(N+K)$ given N integers in range $[a+1, a+K]$
 - If $K = O(N)$, we are able to sort in $O(N)$
 - How is it possible to beat the lower bound?
 - Only because we know more about the data.
 - If nothing is known about the data, the lower bound holds.

- **Radix Sort**
 - Runs in time $O(d(N+K))$ given N items with d digits each in range $[1,K]$

- **Counting Sort**
 - Runs in time $O(N+K)$ given N items in range $[a+1, a+K]$
Stable Sort

- A sort is **stable** if equal elements appear in the same order in both the input and the output.
- Which sorts are stable? Homework!