COT 5407: Introduction to Algorithms Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html

CAP 5510 / CGS 5166

Solving Recurrences using Master Theorem

Master Theorem:

Let $a,b \ge 1$ be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)

- 1. If $f(n) = O(n^{\log_b a e})$ for some constant e > 0, then
 - **T(n) = Theta** $(n^{\log}b^{\alpha})$
- 2. If $f(n) = Theta(n^{\log_{b} \alpha})$, then
 - **T(n) = Theta** $(n^{\log}b^{\alpha} \log n)$
- 3. If $f(n) = Omega(n^{\log_{b} a+e})$ for some constant e>0, then
 - T(n) = Theta(f(n))

Solving Recurrences by Substitution

• Guess the form of the solution

(Using mathematical induction) find the constants and show that the solution works

Example

3

T(n) = 2T(n/2) + n

Guess (#1) T(n) = O(n)

Need T(n) <= cn	for some constant c>0
-----------------	-----------------------

Assume T(n/2) <= cn/2 Inductive hypothesis

Our guess was wrong!!

Solving Recurrences by Substitution: 2

T(n) = 2T(n/2) + n Guess (#2) T(n) = O(n²) Need T(n) <= cn² for some constant c>0 Assume T(n/2) <= cn²/4 Inductive hypothesis Thus T(n) <= 2cn²/4 + n = cn²/2 + n Works for all n as long as c>=2 !! But there is a lot of "slack"

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + nGuess (#3) T(n) = O(nlogn)T(n) <= cnlogn for some constant c>0 Need Assume $T(n/2) \le c(n/2)(\log(n/2))$ Inductive hypothesis $T(n) \le 2 c(n/2)(log(n/2)) + n$ Thus <= cnlogn -cn + n <= cnlogn Works for all n as long as c>=1 !! This is the correct guess. WHY? $T(n) \ge c'nlogn$ for some constant c'>0 Show

Solving Recurrence Relations

Recurrence; Cond	Solution
T(n) = T(n-1) + O(1)	T(n) = O(n)
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$
T(n) = T(n-c) + O(1)	T(n) = O(n)
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$
a = b	
T(n) = aT(n/b) + O(n);	T(n) = O(n)
a < b	
T(n) = aT(n/b) + f(n);	T(n) = O(n)
$f(n) = O(n^{\log_b a - \epsilon})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$
$f(n) = O(n^{\log_b a})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$
$f(n) = \Theta(f(n))$	
$af(n/b) \leq cf(n)$	

6

1/17/17

QuickSort

MergeSort

7

- Divide into 2 equal sublists
- Sort each sublist "recursively"
 - Merge 2 sorted sublists
 - Assumption: Merging is faster than sorting from fresh
- Most of work is done in merging

QuickSort

- Partition into 2 sublists using a pivot
- Sort each sublist "recursively"
- Concatenate 2 sorted sublists
 - Assumption: Partition is faster than sorting
- Most of work is done in partition
- Process described using a tree
 - Top-down process: Partition each list into 2 sublists
 - Bottom-up process: Concatenate two sorted sublists into one sorted sublist

8

1/17/17

Partition Algorithm

Pick a pivot

- Compare each item to a pivot and create two lists:
 - L = list of all items smaller than the pivot
 - R = list of all items larger than the pivot
- One scan through the list is enough, but seems to need extra space
- How to design an in-place partition algorithm!

Partition

Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

COT 5407

10

1/17/17

11

QuickSort

To sort array call QuickSort(A, 1, length[A]).

Partition(array A, int p, int r)

Page 146, CLRS

¹² Time Complexity

- $T(N) = O(N) + T(N_1) + T(N_2)$
- On the average, $N_1 = N_2 = N/2$
- Thus, average-case complexity = O(N log N)
- Worst-case: Either N_1 or $N_2 = 0$
 - Thus, T(N) = O(N) + T(N 1)

T(N) = O(N²)

Invariant for Partition

- At the start of iteration j,
 - A[1..i] has elements that are smaller than or equal to pivot x
 - A[i+1..j-1] has elements that are larger than pivot x
 - A[j..r-1] have not yet been processed
 - A[r] has the pivot x
- Try to prove this invariant!

If Time Complexity

Recurrence Relaton
 T(N) = O(N) + T(N₁) + T(N₂)
 Average-Case Complexity
 On average, N₁ = N₂ = N/

Worst-Case Complexity

- Worst-case: Either N₁ or N₂ = 0
 - Thus, T(N) = O(N) + T(N 1)
 - $\bullet T(N) = O(N^2)$

- T(N) = O(N) + 2T(N/2)
- Thus, average-case complexity = O(N log N)

• Warning: Quicksort cannot be used if a sorting algorithm is needed that runs in time O(n log n) in the worst case.

¹⁵ Variants of QuickSort

- Choice of Pivot
 - Random choice
 - Median of 3
 - Median
- Avoiding recursion on small subarrays
 Invoking InsertionSort for small arrays

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort

Algorithm Analysis

- Worst-case time complexity*
 - Worst possible time of all input instances of length N
- (Worst-case) space complexity
 - Worst possible spaceof all input instances of length N
- Average-case time complexity
 - Average time of all input instances of length N

Upper and Lower Bounds

- Time Complexity of a Problem
 - Difficulty: Since there can be many algorithms that solve a problem, what time complexity should we pick?
 - Solution: Define upper bounds and lower bounds within which the time complexity lies.
- What is the upper bound on time complexity of sorting?
 - Answer: Since SelectionSort runs in worst-case O(N²) and MergeSort runs in O(N log N), either one works as an upper bound.
 - Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e., time complexity of the best algorithm.
- What is the lower bound on time complexity of sorting?
 - Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no algorithm that sorts N items can run in worst-case time o(f(N)).

Lower Bounds

- It's possible to prove lower bounds for many comparison-based problems.
- For comparison-based problems, for inputs of length N, if there are P(N) possible solutions, then
 - any algorithm needs $\log_2(P(N))$ to solve the problem.
- Binary Search on a list of N items has at least N + 1 possible solutions. Hence lower bound is
 - $\log_2(N+1).$
- Sorting a list of N items has at least N! possible solutions. Hence lower bound is
 - $\square \log_2(N!) = O(N \log N)$
- Thus, MergeSort is an optimal algorithm.
 - Because its worst-case time complexity equals lower bound!

COT 5407

Beating the Lower Bound

Bucket Sort

- Runs in time O(N+K) given N integers in range [a+1, a+K]
- If K = O(N), we are able to sort in O(N)
- How is it possible to beat the lower bound?
- Only because we know more about the data.
- If nothing is know about the data, the lower bound holds.
- Radix Sort
 - Runs in time O(d(N+K)) given N items with d digits each in range [1,K]
- Counting Sort
 - Runs in time O(N+K) given N items in range [a+1, a+K]

Stable Sort

A sort is stable if equal elements appear in the same order in both the input and the output.

Which sorts are stable? Homework!