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!2 Solving Recurrences using Master 
Theorem
Master Theorem: 
 Let a,b >= 1 be constants, let f(n) be a function, and let  
   T(n) = aT(n/b) + f(n) 
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then      

! T(n) = Theta(nlog
b

a) 

2. If f(n) = Theta(nlog
b

a), then         
! T(n) = Theta(nlog

b
a log n) 

3. If f(n) = Omega(nlog
b

a+e) for some constant e>0, then     
! T(n) = Theta(f(n))
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!3 Solving Recurrences by Substitution

! Guess the form of the solution 
! (Using mathematical induction) find the constants and show that the 

solution works 
Example 
   T(n) = 2T(n/2) + n 
Guess (#1) T(n) = O(n) 
Need  T(n) <= cn   for some constant c>0 
Assume T(n/2) <= cn/2 Inductive hypothesis 
Thus   T(n) <= 2cn/2 + n = (c+1) n  
   Our guess was wrong!!
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!4 Solving Recurrences by Substitution: 2

   T(n) = 2T(n/2) + n 
Guess (#2) T(n) = O(n2) 
Need  T(n) <= cn2   for some constant c>0 
Assume T(n/2) <= cn2/4 Inductive hypothesis 
Thus   T(n) <= 2cn2/4 + n = cn2/2+ n  
   Works for all n as long as c>=2 !! 
   But there is a lot of “slack”



COT 5407 1/17/17

!5 Solving Recurrences by Substitution: 3

   T(n) = 2T(n/2) + n 
Guess (#3) T(n) = O(nlogn) 
Need  T(n) <= cnlogn   for some constant c>0 
Assume T(n/2) <= c(n/2)(log(n/2))  Inductive hypothesis 
Thus   T(n) <= 2 c(n/2)(log(n/2)) + n  
          <= cnlogn -cn + n <= cnlogn  
   Works for all n as long as c>=1 !! 
   This is the correct guess. WHY? 
Show  T(n) >= c’nlogn  for some constant c’>0
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Solving Recurrence Relations

1/17/17
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QuickSort

MergeSort 
! Divide into 2 equal sublists 
! Sort each sublist “recursively” 
! Merge 2 sorted sublists 

! Assumption: Merging is faster than sorting 
from fresh 

! Most of work is done in merging

QuickSort 
! Partition into 2 sublists using a pivot 
! Sort each sublist “recursively” 
! Concatenate 2 sorted sublists 

! Assumption: Partition is faster than sorting 
! Most of work is done in partition 
! Process described using a tree 

! Top-down process: Partition each list into 
2 sublists 

! Bottom-up process: Concatenate two 
sorted sublists into one sorted sublist

1/17/17
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Figure 8.10   Quicksort

Data Structures & Problem Solving using JAVA/2E       Mark Allen Weiss      © 2002  Addison Wesley
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Partition Algorithm

! Pick a pivot 
! Compare each item to a pivot and create two 

lists: 
! L = list of all items smaller than the pivot 
! R = list of all items larger than the pivot 

! One scan through the list is enough, but seems to 
need extra space 

! How to design an in-place partition algorithm!

1/17/17
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O(N) time
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Data Structures & Problem Solving using JAVA/2E       Mark Allen Weiss      © 2002  Addison Wesley

Figure A  If  6 is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B  Result after Partitioning

Partition
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Page 146, CLRS

QuickSort
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Time Complexity

! T(N) = O(N) + T(N1) + T(N2) 

! On the average, N1 = N2 = N/2 
! Thus, average-case complexity = O(N log N) 
! Worst-case: Either N1 or N2 = 0 

! Thus, T(N) = O(N) + T(N - 1) 
! T(N) = O(N2)

1/17/17
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Invariant for Partition
! At the start of iteration j, 

! A[1..i] has elements that are smaller than or equal to pivot x 
! A[i+1..j-1] has elements that are larger than pivot x 
! A[j..r-1] have not yet been processed 
! A[r] has the pivot x 

! Try to prove this invariant!

1/19/17
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x

ip j r

≤ pivot > pivot unprocessed
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Time Complexity

Recurrence Relaton 
! T(N) = O(N) + T(N1) + T(N2) 
Average-Case Complexity 
! On average, N1 = N2 = N/

2 
! T(N) = O(N) + 2T(N/2) 
! Thus, average-case 

complexity = O(N log N)

Worst-Case Complexity 
! Worst-case: Either N1 or N2 

= 0 
! Thus, T(N) = O(N) + T(N - 1) 
! T(N) = O(N2)

1/19/17
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•Warning: Quicksort cannot be used if a sorting algorithm is 
needed that runs in time O(n log n) in the worst case. 



COT 5407 1/19/17

!15 Variants of QuickSort

! Choice of Pivot 
! Random choice 
! Median of 3 
! Median 

! Avoiding recursion on small subarrays 
! Invoking InsertionSort for small arrays
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!16 Sorting Algorithms

! SelectionSort 
! InsertionSort 
! BubbleSort 
! ShakerSort 
! MergeSort 
! HeapSort 
! QuickSort 
! Bucket & Radix Sort 
! Counting Sort
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!17 Algorithm Analysis

! Worst-case time complexity* 
! Worst possible time of all input instances of length N 

! (Worst-case) space complexity 
! Worst possible spaceof all input instances of length N 

! Average-case time complexity 
! Average time of all input instances of length N
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Upper and Lower Bounds
! Time Complexity of a Problem 

! Difficulty: Since there can be many algorithms that solve a problem, what time 
complexity should we pick? 

! Solution: Define upper bounds and lower bounds within which the time complexity lies. 
! What is the upper bound on time complexity of sorting? 

! Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N), 
either one works as an upper bound.  

! Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e., 
time complexity of the best algorithm. 

! What is the lower bound on time complexity of sorting? 
! Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no 

algorithm that sorts N items can run in worst-case time o(f(N)). 

1/19/17
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Lower Bounds
! It’s possible to prove lower bounds for many comparison-based 

problems.  
! For comparison-based problems, for inputs of length N, if there are P(N) 

possible solutions, then  
! any algorithm needs log2(P(N)) to solve the problem.  

! Binary Search on a list of N items has at least N + 1 possible solutions. 
Hence lower bound is  
! log2(N+1).  

! Sorting a list of N items has at least N! possible solutions. Hence lower 
bound is 
! log2(N!) = O(N log N) 

! Thus, MergeSort is an optimal algorithm.  
! Because its worst-case time complexity equals lower bound!

1/19/17
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Beating the Lower Bound
! Bucket Sort 

! Runs in time O(N+K) given N integers in range [a+1, a+K] 
! If K = O(N), we are able to sort in O(N) 
! How is it possible to beat the lower bound?  
! Only because we know more about the data.  
! If nothing is know about the data, the lower bound holds. 

! Radix Sort 
! Runs in time O(d(N+K)) given N items with d digits each in range 

[1,K] 
! Counting Sort 

! Runs in time O(N+K) given N items in range [a+1, a+K]

1/19/17

!20



COT 5407 1/19/17

!21 Stable Sort

! A sort is stable if equal elements appear in 
the same order in both the input and the 
output. 

! Which sorts are stable? Homework!


