COT 5407: Introduction

to Algorithms

Giri NARASIMHAN
www.cs fiu.edu/~giri/teach/5407S19.htmi

http://www.cs.fiu.edu/~giri/teach/5407S19.html

Solving Recurrences using Master
Theorem

Master Theorem:

Let a,b >= 1 be constants, let f(n) be a function, and let
T(n) = aT(n/b) + f(n)
. If f(n) = O(nlog a-¢) for some constant >0, then

» T(n) = Theta(nlog,)

2. If f(n) = Theta(nleg a), then
» T(n) = Theta(nlog, 2 log n)

3. If f(n) = Omega(nlcg a+e) for some constant e>0, then
= T(n) = Theta(f(n))

COT 5407

Solving Recurrences by Substitution

» Guess the form of the solution

» (Using mathematical induction) find the constants and show that the
solution works

mple

T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)
Need T(n) <=cn for some constant ¢>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <=2cn/2+n=(c+1)n
Our guess was wrong!!

COT 5407 1/17/17

Solving Recurrences by Substitution: 2

T(n) = 2T(n/2) + n
Guess (#2) T(n) = O(n2)
eed T(n) <= cn2 for some constant ¢>0
Assume T(n/2) <= cn2/4 Inductive hypothesis
Thus T(n)<=2cn2/4 +n=cn2/2+n

Works for all n as long as ¢c>=2 1

But there is a lot of “slack”

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + n

Guess (#3) T(n) = O(nlogn)
Need T(n) <= cnlogn for some constant ¢c>0
ssume T(n/2) <=c(n/2)(log(n/2)) Inductive hypothesis
Thus T(n) <=2 ¢(n/2)(log(n/2)) + n

<= cnlogn -cnh + n <= cnlogn
Works for all n as long as ¢>=1 !l
This is the correct guess. WHY?
Show T(n) >= c’nlogn for some constant ¢’>0

COT 5407 1/17/17

Recurrence; Cond

Solution

T(n) =T(n—-1)4+ 0O(1)

T{n) = O(n)

Tn) =T(n—-1)4+ O(n)

T(n) = O(n?)

'1:(‘1'1,:) — ’_1’(71. =5 (‘:) -+ ()(1)

T(n) = OC(n)

T(n) =T(n—c¢)+ O(n)

T(n) = O{n?)

T(n) =2T(n/2) + O(n)

T(n) =0O(nlogn)

T(n) = a'](w/b) + O(n);

n=h

T(n) = O(nlogn)

T(n) =aT(n/b) + O(n);

a < b

T(n) =0O(n)

T(n) = eT(n/b) + f(n);
f(‘”) = (—)(-n,_logb a—(-)

T(n) =0(n)

T(n) =aT(nfb) + f(n),
F(n) = O(nl0%a)

T(n) = ©(n'°%* logmn)

T(n) =aT(n/b) + f(n),
f(n) =9(f(n))
_q,.,r(-n,/b) i (:_f(:').)

T(n) = Q(n'°%2 logn)

Solving Recurrence Relations

QuickSort

MergeSort
= Divide into 2 equal sublists
= Sort each sublist “recursively”
» " Merge 2 sorted sublists
» Assumption: Merging is faster than sorting
from fresh
»

Most of work is done in merging

COT 5407

QuickSort
= Partition into 2 sublists using a pivot
= Sort each sublist “recursively”
=» Concatenate 2 sorted sublists
» Assumption: Partition is faster than sorting
» Most of work is done in partition
»

Process described using a tree

Top-down process: Partition each list into
2 sublists

Bottom-up process: Concatenate two
sorted sublists info one sorted sublist

Figure 8.10 Quicksort

—_ e
~ 31 5 ~
7 31 N\
o7 \
13 12 ‘
\ %) /

h 97 v
\\\ (53] -
——— e

Selas! punl
p—— e ————
— T~
~ 31 A ~..
31 ~
4 57 N\
13 47
\‘\ 97 = v
_ 65 o
—~——— R
‘ Partition
,// o —~ T
: 2\ (Q TN
(13 12) | ez a1
~) 57 // _ —
~ -
Quickson Quicksart
¥ smallitoms large items
/// \\. ,/_,_\ — \\
Q 0 10 26 31 43 57) _\65) :\?581 92/!
~— // "-’ \/__,/
— / 7
- | 4 >
{ 0 13 26 31 43 57 65 75 8 9 P

COT 5407

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss ~ © 2002 Addison Wesley

Partition Algorithm

I O(N) time
» Pjck a pivot

- I(_Zcf)mpare each item to a pivot and create two
ists:

» | = list of all items smaller than the pivot
» R = list of all items larger than the pivot

= One scan through the list is enough, but seems to
nheed extra space

» How to design an in-place partition algorithm!

COT 5407 1/17/17

Partition

Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

2 5 0 3 9 8 7 6
Figure B Result after Partitioning
2 1 4 5 0 3 6 8 7 9
COT 5407

Data Structures & Problem Solving using JAVA/2E

Mark Allen Weiss ~ © 2002 Addison Wesley

QUICKSORT(array A,int p,int r)
if (p <)
then g «— PARTITION(A, p, 1)
QUICKSORT(A,p,q — 1)
QUICKSORT(A,q+ 1,7)

QuickSort

—_— N =

Tosort array call QUICKSORT(A, 1, length|A]).

PARTITION(array A, int p,int v

1z« Alr] >~ Choose pivot

2 1+—p—1

3 forj«—ptor—1

1 do it (A[j] < x)

5 then¢ « 2+ 1

6 exchange A[i] < A[j]

7 exchange Al + 1] < A[r] Page 146, CLRS
8§ return:+ |

Time Complexity

= T(N) = O(N) + T(N,) + T(N,)
» On the average, N, = N,=N/2

= Thus, average-case complexity = O(N log N)
» Worst-case: Either N, or N,=0

® Thus, T(N) = O(N) + T(N - 1)
= T(N) = O(N2)

OOOOOOO

Invariant for Partition

» At the start of iteration j,
= A[l..i] has elements that are smaller than or equal to pivot x
= Ali+1..j-1] has elements that are larger than pivot x
» AJj..r-1] have not yet been processed
= A[r] has the pivot x
= Try to prove this invariant!

< pivot > pivot unprocessed

°T—>
-

COT 5407 1/19/17

Time Complexity

Recurrence Relaton Worst-Case Complexity

» T(N)=O(N)+T(N,) +T(N,) = Worst-case: Either N, or N,
erage-Case Complexity =0

= On average, N, =N, =N/ ™ Thus, T(N) SIOUUESIEENE

5 = T(N) = O(N2)

= T(N) = O(N) + 2T(N/2)

» Thus, average-case
complexity = O(N log N)

- Warning: Quicksort cannot be used if a sorting algorithm is
needed that runs in time O(n log n) in the worst case.

Variants of QuickSort

®» Choice of Pivot

» Random choice
» Median of 3
» Median

» Avoiding recursion on small subarrays
» |nvoking InsertionSort for small arrays

COT 5407 1/19/17

Sorting Algorithms

SelectionSort
InsertionSort
BubbleSort
ShakerSort
MergeSort
HeapSort
QuickSort

Bucket & Radix Sort
Counting Sort

COT 5407

Algorithm Analysis

» Worst-case time complexity*®
» Worst possible time of all input instances of length N

(Worst-case) space complexity
» Worst possible spaceof all input instances of length N

» Average-case time complexity
» Average time of all input instances of length N

COT 5407

Upper and Lower Bounds

» Time Complexity of a Problem

» Difficulty: Since there can be many algorithms that solve a problem, what time
complexity should we pick?

®» Solution: Define upper bounds and lower bounds within which the time complexity lies.
=~ What is the upper bound on time complexity of sorting?

» Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N),
either one works as an upper bound.

» Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e.,
time complexity of the best algorithm.

=» What is the lower bound on fime complexity of sorting?

= Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no
algorithm that sorts N items can run in worst-case time o(f(N)).

COT 5407 1/19/17

Lower Bounds

= |'s possible to prove lower bounds for many comparison-based
problems.

= For comparison-based problems, for inputs of length N, if there are P(N)
possible solutions, then

any algorithm needs IobnggNn to }olve the problem.

Binary Search on a list of N items has at least N + 1 possible solutions.
Hence lower bound is

» |og,(N+1).
= Sorting a list of N items has at least N! possible solutions. Hence lower
bound is
= |og,(N!)=O(N log N)
= Thus, MergeSort is an optimal algorithm.
» Because its worst-case time complexity equals lower bound!

COT 5407 1/19/17

Beating the Lower Bound

= Bucket Sort

Runs in fime O(N+K) given N integers in range [a+1, a+K]
If K= O(N), we are able to sortin O(N)

How is it possible to beat the lower bound?

Only because we know more about the data.

If nothing is know about the data, the lower bound holds.

» Radix Sort

Runs in time O(d(N+K)) given N items with d digits each in range
[1.K]

=» Counting Sort

COT 5407

Runs in time O(N+K) given N items in range [a+1, a+K]

Stable Sort

» A sort is stable if equal elements appear in
the same order in both the input and the
output.

= Which sorts are stable? Homework!

OOOOOOO

