
CAP 5510 / CGS 5166

COT 5407: Introduction
to Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html
1/16/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 1/17/17

!2 Solving Recurrences using Master
Theorem
Master Theorem:
 Let a,b >= 1 be constants, let f(n) be a function, and let
 T(n) = aT(n/b) + f(n)
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then

! T(n) = Theta(nlog
b

a)

2. If f(n) = Theta(nlog
b

a), then
! T(n) = Theta(nlog

b
a log n)

3. If f(n) = Omega(nlog
b

a+e) for some constant e>0, then
! T(n) = Theta(f(n))

COT 5407 1/17/17

!3 Solving Recurrences by Substitution

! Guess the form of the solution
! (Using mathematical induction) find the constants and show that the

solution works
Example
 T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)
Need T(n) <= cn for some constant c>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <= 2cn/2 + n = (c+1) n
 Our guess was wrong!!

COT 5407 1/17/17

!4 Solving Recurrences by Substitution: 2

 T(n) = 2T(n/2) + n
Guess (#2) T(n) = O(n2)
Need T(n) <= cn2 for some constant c>0
Assume T(n/2) <= cn2/4 Inductive hypothesis
Thus T(n) <= 2cn2/4 + n = cn2/2+ n
 Works for all n as long as c>=2 !!
 But there is a lot of “slack”

COT 5407 1/17/17

!5 Solving Recurrences by Substitution: 3

 T(n) = 2T(n/2) + n
Guess (#3) T(n) = O(nlogn)
Need T(n) <= cnlogn for some constant c>0
Assume T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis
Thus T(n) <= 2 c(n/2)(log(n/2)) + n
 <= cnlogn -cn + n <= cnlogn
 Works for all n as long as c>=1 !!
 This is the correct guess. WHY?
Show T(n) >= c’nlogn for some constant c’>0

COT 5407

Solving Recurrence Relations

1/17/17

!6

COT 5407

QuickSort

MergeSort
! Divide into 2 equal sublists
! Sort each sublist “recursively”
! Merge 2 sorted sublists

! Assumption: Merging is faster than sorting
from fresh

! Most of work is done in merging

QuickSort
! Partition into 2 sublists using a pivot
! Sort each sublist “recursively”
! Concatenate 2 sorted sublists

! Assumption: Partition is faster than sorting
! Most of work is done in partition
! Process described using a tree

! Top-down process: Partition each list into
2 sublists

! Bottom-up process: Concatenate two
sorted sublists into one sorted sublist

1/17/17

!7

COT 5407 1/17/17

!8

Figure 8.10 Quicksort

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

COT 5407

Partition Algorithm

! Pick a pivot
! Compare each item to a pivot and create two

lists:
! L = list of all items smaller than the pivot
! R = list of all items larger than the pivot

! One scan through the list is enough, but seems to
need extra space

! How to design an in-place partition algorithm!

1/17/17

!9

O(N) time

COT 5407 1/17/17

!10

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B Result after Partitioning

Partition

COT 5407 1/17/17

!11

Page 146, CLRS

QuickSort

COT 5407

Time Complexity

! T(N) = O(N) + T(N1) + T(N2)

! On the average, N1 = N2 = N/2
! Thus, average-case complexity = O(N log N)
! Worst-case: Either N1 or N2 = 0

! Thus, T(N) = O(N) + T(N - 1)
! T(N) = O(N2)

1/17/17

!12

COT 5407

Invariant for Partition
! At the start of iteration j,

! A[1..i] has elements that are smaller than or equal to pivot x
! A[i+1..j-1] has elements that are larger than pivot x
! A[j..r-1] have not yet been processed
! A[r] has the pivot x

! Try to prove this invariant!

1/19/17

!13

x

ip j r

≤ pivot > pivot unprocessed

COT 5407

Time Complexity

Recurrence Relaton
! T(N) = O(N) + T(N1) + T(N2)
Average-Case Complexity
! On average, N1 = N2 = N/

2
! T(N) = O(N) + 2T(N/2)
! Thus, average-case

complexity = O(N log N)

Worst-Case Complexity
! Worst-case: Either N1 or N2

= 0
! Thus, T(N) = O(N) + T(N - 1)
! T(N) = O(N2)

1/19/17

!14

•Warning: Quicksort cannot be used if a sorting algorithm is
needed that runs in time O(n log n) in the worst case.

COT 5407 1/19/17

!15 Variants of QuickSort

! Choice of Pivot
! Random choice
! Median of 3
! Median

! Avoiding recursion on small subarrays
! Invoking InsertionSort for small arrays

COT 5407 1/19/17

!16 Sorting Algorithms

! SelectionSort
! InsertionSort
! BubbleSort
! ShakerSort
! MergeSort
! HeapSort
! QuickSort
! Bucket & Radix Sort
! Counting Sort

COT 5407 1/19/17

!17 Algorithm Analysis

! Worst-case time complexity*
! Worst possible time of all input instances of length N

! (Worst-case) space complexity
! Worst possible spaceof all input instances of length N

! Average-case time complexity
! Average time of all input instances of length N

COT 5407

Upper and Lower Bounds
! Time Complexity of a Problem

! Difficulty: Since there can be many algorithms that solve a problem, what time
complexity should we pick?

! Solution: Define upper bounds and lower bounds within which the time complexity lies.
! What is the upper bound on time complexity of sorting?

! Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N),
either one works as an upper bound.

! Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e.,
time complexity of the best algorithm.

! What is the lower bound on time complexity of sorting?
! Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no

algorithm that sorts N items can run in worst-case time o(f(N)).

1/19/17

!18

COT 5407

Lower Bounds
! It’s possible to prove lower bounds for many comparison-based

problems.
! For comparison-based problems, for inputs of length N, if there are P(N)

possible solutions, then
! any algorithm needs log2(P(N)) to solve the problem.

! Binary Search on a list of N items has at least N + 1 possible solutions.
Hence lower bound is
! log2(N+1).

! Sorting a list of N items has at least N! possible solutions. Hence lower
bound is
! log2(N!) = O(N log N)

! Thus, MergeSort is an optimal algorithm.
! Because its worst-case time complexity equals lower bound!

1/19/17

!19

COT 5407

Beating the Lower Bound
! Bucket Sort

! Runs in time O(N+K) given N integers in range [a+1, a+K]
! If K = O(N), we are able to sort in O(N)
! How is it possible to beat the lower bound?
! Only because we know more about the data.
! If nothing is know about the data, the lower bound holds.

! Radix Sort
! Runs in time O(d(N+K)) given N items with d digits each in range

[1,K]
! Counting Sort

! Runs in time O(N+K) given N items in range [a+1, a+K]

1/19/17

!20

COT 5407 1/19/17

!21 Stable Sort

! A sort is stable if equal elements appear in
the same order in both the input and the
output.

! Which sorts are stable? Homework!

