Homework

- Read Guidelines and Follow Instructions!
- Statement of Collaboration
 - Take it seriously.
 - If true, reproduce the statement faithfully.
 - For each problem, explain separately the sources and your collaborations with other people.
 - Your homework will not be graded without the statement.
- Extra Credit Problem
 - You can turn it in any time within a month or until last class day, whichever is earlier.
 - If you are not sure of your solution, don’t waste my time.
 - You will NOT get partial credit on an extra credit problem.
 - Submit it separately and label it appropriately.
Definition of big-Oh

- We say that $F(n) = O(G(n))$, if there exists two positive constants, c and n_0, such that:
 - For all $n \geq n_0$, we have $F(n) \leq c \cdot G(n)$

- We say that $F(n) = \Omega(G(n))$, if there exists two positive constants, c and n_0, such that:
 - For all $n \geq n_0$, we have $F(n) \geq c \cdot G(n)$

- We say that $F(n) = \Theta(G(n))$, if $F(n) = O(G(n))$ and $F(n) = \Omega(G(n))$

- We say that $F(n) = \omega(G(n))$, if $F(n) = \Omega(G(n))$, but $F(n) \neq \Theta(G(n))$

- We say that $F(n) = o(G(n))$, if $F(n) = O(G(n))$, but $F(n) \neq \Theta(G(n))$
Figure 3.1 Graphic examples of the Θ, O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ-notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0, c_1, and c_2 such that to the right of n_0, the value of $f(n)$ always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write $f(n) = O(g(n))$ if there are positive constants n_0 and c such that to the right of n_0, the value of $f(n)$ always lies on or below $cg(n)$. (c) Ω-notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0, the value of $f(n)$ always lies on or above $cg(n)$.
Storing binary trees as arrays
Heaps (Max-Heap)

HEAP represents a **complete** binary tree stored as an array such that:

- **HEAP PROPERTY**: Parent value is \geq child’s value

Complete Binary Tree:

- Tree is filled on all levels except the last level
- Last level is filled from left to right
- Left & right child of i are in locations $2i$ and $2i+1$
HeapSort

- First convert array into a heap (**BUILD-MAX-HEAP**, p157)
- Then convert heap into sorted array (**HEAPSORT**, p160)
Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/
HeapSort: Part 1

\textbf{Max-Heapify}(array \ A, \text{int} \ i)

▷ Assume subtree rooted at \(i\) is not a heap;
▷ but subtrees rooted at children of \(i\) are heaps

1. \(l \leftarrow \text{LEFT}[i]\)
2. \(r \leftarrow \text{RIGHT}[i]\)
3. \textbf{if} ((\(l \leq \text{heap-size}[A]\) and \(A[l] > A[i]\)))
 \textbf{then} largest \(\leftarrow l\)
4. \textbf{else} largest \(\leftarrow i\)
5. \textbf{if} ((\(r \leq \text{heap-size}[A]\) and \(A[r] > A[\text{largest}]\)))
6. \textbf{then} largest \(\leftarrow r\)
7. \textbf{if} (largest \(\neq i\))
8. \textbf{then} exchange \(A[i] \leftarrow A[\text{largest}]\)
9. \textbf{MAX-HEAPIFY}(\(A, \text{largest}\))
Analysis of Max-Heapify

- \(T(N) \leq T(2N/3) + O(1) \)

- When called on node \(i \), either it terminates with \(O(1) \) steps or makes a recursive call on node at lower level

- At most 1 call per level

- Time Complexity = \(O(\text{level of node } i) = O(h_i) = O(\log N) \)

```
MAX-HEAPIFY(array A, int i)
▷ Assume subtree rooted at \( i \) is not a heap;
▷ but subtrees rooted at children of \( i \) are heaps
1  l ← LEFT[i]
2  r ← RIGHT[i]
3  if ((l ≤ heap-size[A]) and (A[l] > A[i]))
4      then largest ← l
5      else largest ← i
6  if ((r ≤ heap-size[A]) and (A[r] > A[largest]))
7      then largest ← r
8  if (largest ≠ i)
9      then exchange A[i] ← A[largest]
10     MAX-HEAPIFY(A, largest)
```
HeapSort: Part 2

```
BUILD-MAX-HEAP(array A)
1  heap-size[A] ← length[A]
2  for i ← [length[A]/2] downto 1
3    do MAX-HEAPIFY(A, i)
```
HeapSort: Part 2

Build-Max-Heap (array A)
1. heap-size[A] ← length[A]
2. for i ← [length[A]/2] downto 1
3. do MAX-HEAPIFY(A, i)

HeapSort (array A)
1. Build-Max-Heap(A)
2. for i ← length[A] downto 2
4. heap-size[A] ← heap-size[A] − 1
5. MAX-HEAPIFY(A, 1)

Total: $O(n \log n)$
HeapSort: Part 2

- For n/2 nodes, height is 1 and # of comparisons = 0,
- For n/4 nodes, height is 2 and # of comparisons = 1,
- For n/8 nodes, height is 3 and # of comparisons = 2, ...
- Total = summation ((height - 1) X # of nodes at that height)
- Total = summation ((height – 1) X N/2^{height})
- Total ≤ summation (height X N/2^{height})
- Total ≤ N X summation (height X 1/2^{height})

```
BUILD-MAX-HEAP(array A)
1  heap-size[A] ← length[A]
2  for i ← [length[A]/2] downto 1
3    do MAX-HEAPIFY(A, i)
```
We need to compute:

\[
n \times \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}
\]

Build-Max-Heap: O(n)

We know that

\[
\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}
\]

Differentiating both sides, we get

\[
\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}
\]

Multiplying both sides by x, we get

\[
\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}
\]

Setting \(x = 1/2 \), we can show that

\[
\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \leq 2
\]
HeapSort

- Single call to Max-Heapify runs in O(h) time
- However, Build-Max-Heap runs in O(n) time
- HeapSort runs in O(n log n) time

```plaintext
Build-Max-Heap(array A)
1  heap-size[A] ← length[A]
2  for i ← [length[A]/2] downto 1
do  MAX-HEAPIFY(A, i)

HeapSort(array A)
1  Build-Max-Heap(A)
2  for i ← length[A] downto 2
3  heap-size[A] ← heap-size[A] − 1
4  MAX-HEAPIFY(A, 1)
```
Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- QuickSort
- MergeSort
- HeapSort
- Bucket & Radix Sort
- Counting Sort

Worst Case: $O(N^2)$

Worst Case: $O(N \log N)$

Avg Case: $O(N \log N)$

Lower Bound for Comparison-based Sorting

Worst Case: $O(N)$; Not comparison-based
Upper and Lower Bounds

- Time Complexity of a Problem
 - **Difficulty**: Since there can be many algorithms that solve a problem, what time complexity should we pick?
 - **Solution**: Define upper bounds and lower bounds within which the time complexity lies.

- What is the upper bound on time complexity of sorting?
 - **Answer**: Since SelectionSort runs in worst-case $O(N^2)$ and MergeSort runs in $O(N \log N)$, either one works as an upper bound.
 - **Critical Point**: Among all upper bounds, the best is the lowest possible upper bound, i.e., time complexity of the best algorithm.

- What is the lower bound on time complexity of sorting?
 - **Difficulty**: If we claim that lower bound is $O(f(N))$, then we have to prove that no algorithm that sorts N items can run in worst-case time $o(f(N))$.
Lower Bounds

- It’s possible to prove lower bounds for many comparison-based problems.

- For comparison-based problems, for inputs of length N, if there are $P(N)$ possible solutions, then
 - any algorithm needs $\log_2(P(N))$ to solve the problem.

- Binary Search on a list of N items has at least $N + 1$ possible solutions. Hence lower bound is
 - $\log_2(N+1)$.

- Sorting a list of N items has at least $N!$ possible solutions. Hence lower bound is
 - $\log_2(N!) = O(N \log N)$

- Thus, MergeSort is an optimal algorithm.
 - Because its worst-case time complexity equals lower bound!
Beating the Lower Bound

- **Bucket Sort**
 - Runs in time $O(N+K)$ given N integers in range $[a+1, a+K]$
 - If $K = O(N)$, we are able to sort in $O(N)$
 - How is it possible to beat the lower bound?
 - Only because we know more about the data.
 - If nothing is know about the data, the lower bound holds.

- **Radix Sort**
 - Runs in time $O(d(N+K))$ given N items with d digits each in range $[1,K]$

- **Counting Sort**
 - Runs in time $O(N+K)$ given N items in range $[a+1, a+K]$
Bucket Sort

- **N integer** values in the range \([a..a+m-1]\)
- For e.g., sort a list of 50 scores in the range \([0..9]\).
- **Algorithm**
 - Make \(m\) buckets \([a..a+m-1]\)
 - As you read elements throw into appropriate bucket
 - Output contents of buckets \([0..m]\) in that order
- **Time** \(O(N+m)\)
- **Warning:** This algorithm cannot be used for “infinite-precision” real numbers, even if the range of values is specified.
Stable Sort

- A sort is **stable** if equal elements appear in the same order in both the input and the output.
- Which sorts are stable?
Radix Sort

Algorithm

for i = 1 to d do
 sort array A on digit i using any sorting algorithm

Time Complexity: $O((N+m) + (N+m^2) + \ldots + (N+m^d))$

Space Complexity: $O(m^d)$
Radix Sort

Algorithm

\[
\text{for } i = 1 \text{ to } d \text{ do} \\
\quad \text{sort array } A \text{ on digit } i \text{ using a stable sort algorithm}
\]

Time Complexity: $O((n+m)d)$

• Warning: This algorithm cannot be used for “infinite-precision” real numbers, even if the range of values is specified.
Counting Sort

Initial Array

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Counts

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Cumulative Counts

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Warning: This algorithm cannot be used for “infinite-precision” real numbers, even if the range of values is specified.