COT 5407: Introduction to Algorithms

Giri NARASIMHAN

Beating the Lower Bound

- **Bucket Sort**
 - Runs in time $O(N+K)$ given N integers in range $[a+1, a+K]$
 - If $K = O(N)$, we are able to sort in $O(N)$
 - How is it possible to beat the lower bound?
 - Only because we know more about the data.
 - If nothing is known about the data, the lower bound holds.

- **Radix Sort**
 - Runs in time $O(d(N+K))$ given N items with d digits each in range $[1,K]$

- **Counting Sort**
 - Runs in time $O(N+K)$ given N items in range $[a+1, a+K]$
Bucket Sort

- **N integer** values in the range \([a..a+m-1]\)
- For e.g., sort a list of 50 scores in the range \([0..9]\).

Algorithm

- Make \(m\) buckets \([a..a+m-1]\)
- As you read elements throw into appropriate bucket
- Output contents of buckets \([0..m]\) in that order

Time \(O(N+m)\)

Warning: This algorithm cannot be used for “infinite-precision” real numbers, even if the range of values is specified.
Stable Sort

- A sort is **stable** if equal elements appear in the same order in both the input and the output.

- Which sorts are stable?
Algorithm

for i = 1 to d do
 sort array A on digit i using any sorting algorithm

Time Complexity: \(O((N+m) + (N+m^2) + \ldots + (N+m^d))\)

Space Complexity: \(O(m^d)\)
Radix Sort

Algorithm for $i = 1$ to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: $O((n+m)d)$

• Warning: This algorithm cannot be used for “infinite-precision” real numbers, even if the range of values is specified.
Counting Sort

<table>
<thead>
<tr>
<th>Initial Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>2 5 3 0 2 3 0 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5</td>
</tr>
<tr>
<td>2 0 2 3 0 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cumulative Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5</td>
</tr>
<tr>
<td>2 2 4 7 7 8</td>
</tr>
</tbody>
</table>

Warning: This algorithm cannot be used for “infinite-precision” real numbers, even if the range of values is specified.
Tree Sorting

- BST is a search structure that helps efficient search
 - Search can be done in $O(h)$ time, where $h =$ height of BST
 - Also inserts and deletes can be done in $O(h)$ time
 - Unfortunately, Height $h = O(N)$
- Balanced BST improves BST with $h = O(\log N)$
 - Thus search can be done in $O(\log N)$
 - And, inserts and deletes too can be done in $O(\log N)$ time
- We can use BBSTs in the following way:
 - Repeatedly insert N items into a BBST
 - Repeatedly delete the smallest item from the BBST until it is empty
- N inserts and N deletes can be done in $O(N \log N)$ time
Order Statistics

- **Maximum, Minimum**
 - **Upper Bound**
 - $O(n)$ because ??
 - We have an algorithm with a single for-loop: $n-1$ comparisons
 - **Lower Bound**
 - $n-1$ comparisons

- **MinMax**
 - **Upper Bound**: $2(n-1)$ comparisons
 - **Lower Bound**: $3n/2$ comparisons

- **Max and 2ndMax**
 - **Upper Bound**: $(n-1) + (n-2)$ comparisons
 - **Lower Bound**: Harder to prove

$$\text{Rank}_A(x) = \text{position of } x \text{ in sorted order of } A$$
k-Selection; Median

- Select the k-th smallest item in list
- Naïve Solution
 - Sort;
 - pick the k-th smallest item in sorted list.
 \[O(n \log n) \] time complexity
- Idea: Modify Partition from QuickSort
 - How?
- Randomized solution: Average case $O(n)$
- Improved Solution: worst case $O(n)$
Using Partition for k-Selection

- Perform Partition from QuickSort (assume all unique items)
- Rank(pivot) = 1 + # of items that are smaller than pivot
- If Rank(pivot) = k, we are done
- Else, recursively perform k-Selection in one of the two partitions

```
PARTITION(array A, int p, int r)
1  x ← A[r]  ▷ Choose pivot
2  i ← p − 1
3  for j ← p to r − 1
4      do if (A[j] ≤ x)
5        then i ← i + 1
7  exchange A[i + 1] ← A[r]
8  return i + 1
```
QuickSelect: a variant of QuickSort

```python
QUICKSELECT(array A, int k, int p, int r)
   ▷ Select k-th largest in subarray A[p..r]
1   if (p = r)
2      then return A[p]
3   q ← PARTITION(A, p, r)
4   i ← q − p + 1   ▷ Compute rank of pivot
5   if (i = k)
6      then return A[q]
7   if (i > k)
8      then return QUICKSELECT(A, k, p, q)
9   else return QUICKSELECT(A, k − i, q + 1, r)
```
k-Selection Time Complexity

- Perform Partition from QuickSort (assume all unique items)
- \(\text{Rank}(\text{pivot}) = 1 + \# \text{ of items that are smaller than pivot} \)
- If \(\text{Rank}(\text{pivot}) = k \), we are done
- Else, recursively perform k-Selection in one of the two partitions

- On the average:
 - \(\text{Rank}(\text{pivot}) = n / 2 \)
- Average-case time
 - \(T(N) = T(N/2) + O(N) \)
 - \(T(N) = O(N) \)
- Worst-case time
 - \(T(N) = T(N-1) + O(N) \)
 - \(T(N) = O(N^2) \)

```plaintext
Partition(array A, int p, int r)
1  x ← A[r]          ▶ Choose pivot
2  i ← p - 1
3  for j ← p to r - 1
4    do if (A[j] ≤ x)
5      then i ← i + 1
7  exchange A[i + 1] ← A[r]
8  return i + 1
```
Randomized Solution for k-Selection

- Uses RandomizedPartition instead of Partition
 - RandomizedPartition picks the pivot uniformly at random from among the elements in the list to be partitioned.
- Randomized k-Selection runs in $O(N)$ time on the average
- Worst-case behavior is very poor $O(N^2)$