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Computation Tree for A on n inputs
! Assume A is a comparison-based sorting alg 
! Every node represents a comparison between two 

items in A 
! Branching based on result of comparison 
! Leaf corresponds to algorithm halting with output 
! Every input follows a path in tree 
! Different inputs follow different paths 
! Time complexity on input x = depth of leaf where it 

ends on input x
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Upper Bounds on Time Complexity
! Time complexity of algorithm A to solve problem P on 

specific input x 
! Simply count the steps T(A, x) = lower and upper bound 

! Time complexity of algorithm A to solve problem P on 
any input of length N  
! TA(N) = maxx T(A,x) 

! Time complexity of prob P on any input of length N  
! Time complexity of best algorithm to solve problem P on any 

input of length N
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Lower Bounds on Time Complexity
! Lower Bound on Time complexity of algorithm A 

to solve problem P on any input of length N  
! Some function that lower bounds the time complexity 

of A on inputs of length N 
! Time complxty of prob P on any input of length N  

! Lower bound on Time complexity of best algorithm to 
solve problem P on worst case input of length N
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!5 Stable Sort

! A sort is stable if equal elements appear in 
the same order in both the input and the 
output. 

! Which sorts are stable? 
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!6 k-Selection; Median
! Select the k-th smallest item in list 
! Naïve Solution 

! Sort;  
! pick the k-th smallest item in sorted list. 
   O(n log n) time complexity 

! Idea: Modify Partition from QuickSort 
! How? 

! Randomized solution: Average case O(n) 
! Improved Solution: worst case O(n)
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k-Selection Time Complexity
! Perform Partition from QuickSort (assume all unique items) 
! Rank(pivot) = 1 + # of items that are smaller than pivot 
! If Rank(pivot) = k, we are done 
! Else, recursively perform k-Selection in one of the two partitions 
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• On the average: 
▪ Rank(pivot) = n / 2 

• Average-case time 
▪ T(N) = T(N/2) + O(N)  
▪ T(N) = O(N) 

• Worst-case time 
▪ T(N) = T(N-1) + O(N) 
▪ T(N) = O(N2)
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!8 Randomized Solution for k-Selection
! Uses RandomizedPartition instead of Partition 

! RandomizedPartition picks the pivot uniformly at 
random from among the elements in the list to be 
partitioned.  

! Randomized k-Selection runs in O(N) time on 
the average 

! Worst-case behavior is very poor O(N2)
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!9 k-Selection & Median: Improved Algorithm
! Start with initial array 
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QuickSelect (A) & Improved Median (B)
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Partition
Input 
Array

Pivot

q = Rank(Pivot)

Q < k
Discard R/L

Partition
Input 
Array q = Rank(Pivot)

Q < k
Discard R/L

Pivot

Median of 
(Medians of 5)

A

B
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! Use median of medians as pivot 

! T(n) < O(n)  + T(n/5) + T(3n/4)

k-Selection & Median: Improved Algorithm
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!12 ImprovedSelect
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!13 PivotPartition
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!14 Data Structure Evolution

! Standard operations on data structures 
! Search 
! Insert 
! Delete 

! Linear Lists  
! Implementation: Arrays (Unsorted and Sorted) 

! Dynamic Linear Lists 
! Implementation: Linked Lists 

! Dynamic Trees 
! Implementation: Binary Search Trees
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!15 BST: Search

Time Complexity: O(h)
h = height of binary search tree

Not O(log n) — Why?
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!16 BST: Insert
Time Complexity: O(h)

h = height of binary search tree

Search for x in T

Insert x as leaf in T
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BST: Delete

Time Complexity: O(h)
h = height of binary search tree

Set y as the node to be deleted. It 
has at most one child, and let that 
child be node x

If y has one child, then y is deleted 
and the parent pointer of x is fixed.

The child pointers of the parent of x 
is fixed.

The contents of node z are fixed.


