
CAP 5510 / CGS 5166

COT 5407: Introduction
to Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html
1/29/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

CAP 5510 / CGS 5166

Computation Tree for A on n inputs
! Assume A is a comparison-based sorting alg
! Every node represents a comparison between two

items in A
! Branching based on result of comparison
! Leaf corresponds to algorithm halting with output
! Every input follows a path in tree
! Different inputs follow different paths
! Time complexity on input x = depth of leaf where it

ends on input x

1/29/19

!2

CAP 5510 / CGS 5166

Upper Bounds on Time Complexity
! Time complexity of algorithm A to solve problem P on

specific input x
! Simply count the steps T(A, x) = lower and upper bound

! Time complexity of algorithm A to solve problem P on
any input of length N
! TA(N) = maxx T(A,x)

! Time complexity of prob P on any input of length N
! Time complexity of best algorithm to solve problem P on any

input of length N

1/29/19

!3

CAP 5510 / CGS 5166

Lower Bounds on Time Complexity
! Lower Bound on Time complexity of algorithm A

to solve problem P on any input of length N
! Some function that lower bounds the time complexity

of A on inputs of length N
! Time complxty of prob P on any input of length N

! Lower bound on Time complexity of best algorithm to
solve problem P on worst case input of length N

1/29/19

!4

COT 5407 1/24/17

!5 Stable Sort

! A sort is stable if equal elements appear in
the same order in both the input and the
output.

! Which sorts are stable?

COT 5407 9/30/08

!6 k-Selection; Median
! Select the k-th smallest item in list
! Naïve Solution

! Sort;
! pick the k-th smallest item in sorted list.
 O(n log n) time complexity

! Idea: Modify Partition from QuickSort
! How?

! Randomized solution: Average case O(n)
! Improved Solution: worst case O(n)

COT 5407

k-Selection Time Complexity
! Perform Partition from QuickSort (assume all unique items)
! Rank(pivot) = 1 + # of items that are smaller than pivot
! If Rank(pivot) = k, we are done
! Else, recursively perform k-Selection in one of the two partitions

1/26/17

!7

• On the average:
▪ Rank(pivot) = n / 2

• Average-case time
▪ T(N) = T(N/2) + O(N)
▪ T(N) = O(N)

• Worst-case time
▪ T(N) = T(N-1) + O(N)
▪ T(N) = O(N2)

COT 5407 9/30/08

!8 Randomized Solution for k-Selection
! Uses RandomizedPartition instead of Partition

! RandomizedPartition picks the pivot uniformly at
random from among the elements in the list to be
partitioned.

! Randomized k-Selection runs in O(N) time on
the average

! Worst-case behavior is very poor O(N2)

COT 5407 9/30/08

!9 k-Selection & Median: Improved Algorithm
! Start with initial array

COT 5407

QuickSelect (A) & Improved Median (B)

1/31/17

!10

Partition
Input
Array

Pivot

q = Rank(Pivot)

Q < k
Discard R/L

Partition
Input
Array q = Rank(Pivot)

Q < k
Discard R/L

Pivot

Median of
(Medians of 5)

A

B

COT 5407 9/30/08

!11

! Use median of medians as pivot

! T(n) < O(n) + T(n/5) + T(3n/4)

k-Selection & Median: Improved Algorithm

COT 5407 9/30/08

!12 ImprovedSelect

COT 5407 9/30/08

!13 PivotPartition

COT 5407 1/31/17

!14 Data Structure Evolution

! Standard operations on data structures
! Search
! Insert
! Delete

! Linear Lists
! Implementation: Arrays (Unsorted and Sorted)

! Dynamic Linear Lists
! Implementation: Linked Lists

! Dynamic Trees
! Implementation: Binary Search Trees

COT 5407 1/31/17

!15 BST: Search

Time Complexity: O(h)
h = height of binary search tree

Not O(log n) — Why?

COT 5407 1/31/17

!16 BST: Insert
Time Complexity: O(h)

h = height of binary search tree

Search for x in T

Insert x as leaf in T

COT 5407 1/31/17

!17
BST: Delete

Time Complexity: O(h)
h = height of binary search tree

Set y as the node to be deleted. It
has at most one child, and let that
child be node x

If y has one child, then y is deleted
and the parent pointer of x is fixed.

The child pointers of the parent of x
is fixed.

The contents of node z are fixed.

