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!2 Solving Recurrences using Master 
Theorem
Master Theorem: 
 Let a,b >= 1 be constants, let f(n) be a function, and let  
   T(n) = aT(n/b) + f(n) 
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then      

! T(n) = Theta(nlog
b

a) 

2. If f(n) = Theta(nlog
b

a), then         
! T(n) = Theta(nlog

b
a log n) 

3. If f(n) = Omega(nlog
b

a+e) for some constant e>0, then     
! T(n) = Theta(f(n))
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!3 Solving Recurrences by Substitution

! Guess the form of the solution 
! (Using mathematical induction) find the constants and show that the 

solution works 
Example 
   T(n) = 2T(n/2) + n 
Guess (#1) T(n) = O(n) 
Need  T(n) <= cn   for some constant c>0 
Assume T(n/2) <= cn/2 Inductive hypothesis 
Thus   T(n) <= 2cn/2 + n = (c+1) n  
   Our guess was wrong!!
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!4 Solving Recurrences by Substitution: 2

   T(n) = 2T(n/2) + n 
Guess (#2) T(n) = O(n2) 
Need  T(n) <= cn2   for some constant c>0 
Assume T(n/2) <= cn2/4 Inductive hypothesis 
Thus   T(n) <= 2cn2/4 + n = cn2/2+ n  
   Works for all n as long as c>=2 !! 
   But there is a lot of “slack”
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!5 Solving Recurrences by Substitution: 3

   T(n) = 2T(n/2) + n 
Guess (#3) T(n) = O(nlogn) 
Need  T(n) <= cnlogn   for some constant c>0 
Assume T(n/2) <= c(n/2)(log(n/2))  Inductive hypothesis 
Thus   T(n) <= 2 c(n/2)(log(n/2)) + n  
          <= cnlogn -cn + n <= cnlogn  
   Works for all n as long as c>=1 !! 
   This is the correct guess. WHY? 
Show  T(n) >= c’nlogn  for some constant c’>0
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Solving Recurrence Relations

1/17/17
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!7 Sorting Algorithms

! SelectionSort 
! InsertionSort 
! BubbleSort 
! ShakerSort 
! MergeSort 
! HeapSort 
! QuickSort 
! Bucket & Radix Sort 
! Counting Sort
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!8 Sorting Algorithms

! Number of Comparisons 
! Number of Data Movements 
! Additional Space Requirements
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!9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 

Assumption: Array A is sorted from [p..q] 
and from [q+1..r]. 

Sentinel Items: Two sentinel items 
placed in lists L and R.

Space: Two extra arrays L and R are 
used. 

Merge: The smaller of the item in L and 
item in R is moved to next location in A

Time : O(length of lists)
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!10

Page 146, CLRS

QuickSort
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Lower Bounds
! It’s possible to prove lower bounds for many comparison-based 

problems.  
! For comparison-based problems, for inputs of length N, if there are P(N) 

possible solutions, then  
! any algorithm needs log2(P(N)) to solve the problem.  

! Binary Search on a list of N items has at least N + 1 possible solutions. 
Hence lower bound is  
! log2(N+1).  

! Sorting a list of N items has at least N! possible solutions. Hence lower 
bound is 
! log2(N!) = O(N log N) 

! Thus, MergeSort is an optimal algorithm.  
! Because its worst-case time complexity equals lower bound!

1/19/17
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!12 k-Selection; Median
! Select the k-th smallest item in list 
! Naïve Solution 

! Sort;  
! pick the k-th smallest item in sorted list. 
   O(n log n) time complexity 

! Idea: Modify Partition from QuickSort 
! How? 

! Randomized solution: Average case O(n) 
! Improved Solution: worst case O(n)



More Dynamic Operations

Se/In/De Rank Select Comments

Balanced BSTs O(log N) O(N) O(N)

Augmented BBSTs O(log N) O(log N) O(log N)

Search Insert Delete Comments

Unsorted Arrays O(N) O(1) O(N)

Sorted Arrays O(log N) O(N) O(N)

Unsorted Linked 
Lists O(N) O(1) O(N)

Sorted Linked Lists O(N) O(N) O(N)

Binary Search Trees O(H) O(H) O(H) H = O(N)

Balanced BSTs O(log N) O(log N) O(log N) As H = O(log N)
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!14 OS-Rank
OS-RANK(x,y)  
// Different from text (recursive version) 
// Find the rank of x in the subtree rooted at y 
1  r = size[left[y]] + 1 
2  if x = y then return r 
3 else if ( key[x] < key[y] ) then  
4  return OS-RANK(x,left[y]) 
5 else return r + OS-RANK(x,right[y] )

Time Complexity O(log n)
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!15 OS-Select

OS-SELECT(x,i) //page 304 
// Select the node with rank i 
// in the subtree rooted at x 
1. r = size[left[x]]+1  
2. if i = r then  
3.            return x 
4. elseif  i < r then 
5.            return OS-SELECT (left[x], i) 
6. else     return OS-SELECT (right[x], i-r)

Time Complexity O(log n)
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!16 How to augment data structures

1. choose an underlying data structure 
2. determine additional information to be 

maintained in the underlying data structure, 
3. develop new operations, 
4. verify that the additional information can be 

maintained for the modifying operations on 
the underlying data structure.
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!17 Augmenting RB-Trees
Theorem 14.1, page 309 
 Let f be a field that augments a red-black tree T with n nodes, 

and f(x) can be computed using only the information in 
nodes x, left[x], and right[x], including f[left[x]] and f[right[x]]. 

 Then, we can maintain f(x) during insertion and deletion 
without asymptotically affecting the O(log n) performance of 
these operations. 

For example, 
 size[x] = size[left[x]] + size[right[x]] + 1 
 rank[x] = ?
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!18 Augmenting information for RB-Trees

! Parent 
! Height 
! Any associative function on all previous 

values or all succeeding values.  
! Next 
! Previous
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!19 Approach to DP Problems
! Write down a recursive solution 
! Use recursive solution to identify list of 

subproblems to solve (there must be overlapping 
subproblems for effective DP) 

! Decide a data structure to store solutions to 
subproblems (MEMOIZATION) 

! Write down Recurrence relation for solutions of 
subproblems 

! Identify a hierarchy/order for subproblems 
! Write down non-recursive solution/algorithm
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!20 1-d, 2-d, 3-d Dynamic Programming
! Classification based on the dimension of the table 

used to store solutions to subproblems.  
! 1-dimensional DP 

! Activity Problem 
! 2-dimensional DP 

! LCS Problem 
! 0-1 Knapsack Problem 
! Matrix-chain multiplication 

! 3-dimensional DP 
! All-pairs shortest paths problem
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1. Recurrence Relations
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1. More Recurrence Relations
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RB-Trees
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Have my cake and eat it too … 
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Finding k poor students
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