
CAP 5510 / CGS 5166

COT 5407: Introduction
to Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html
2/26/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 1/17/17

!2 Solving Recurrences using Master
Theorem
Master Theorem:
 Let a,b >= 1 be constants, let f(n) be a function, and let
 T(n) = aT(n/b) + f(n)
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then

! T(n) = Theta(nlog
b

a)

2. If f(n) = Theta(nlog
b

a), then
! T(n) = Theta(nlog

b
a log n)

3. If f(n) = Omega(nlog
b

a+e) for some constant e>0, then
! T(n) = Theta(f(n))

COT 5407 1/17/17

!3 Solving Recurrences by Substitution

! Guess the form of the solution
! (Using mathematical induction) find the constants and show that the

solution works
Example
 T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)
Need T(n) <= cn for some constant c>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <= 2cn/2 + n = (c+1) n
 Our guess was wrong!!

COT 5407 1/17/17

!4 Solving Recurrences by Substitution: 2

 T(n) = 2T(n/2) + n
Guess (#2) T(n) = O(n2)
Need T(n) <= cn2 for some constant c>0
Assume T(n/2) <= cn2/4 Inductive hypothesis
Thus T(n) <= 2cn2/4 + n = cn2/2+ n
 Works for all n as long as c>=2 !!
 But there is a lot of “slack”

COT 5407 1/17/17

!5 Solving Recurrences by Substitution: 3

 T(n) = 2T(n/2) + n
Guess (#3) T(n) = O(nlogn)
Need T(n) <= cnlogn for some constant c>0
Assume T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis
Thus T(n) <= 2 c(n/2)(log(n/2)) + n
 <= cnlogn -cn + n <= cnlogn
 Works for all n as long as c>=1 !!
 This is the correct guess. WHY?
Show T(n) >= c’nlogn for some constant c’>0

COT 5407

Solving Recurrence Relations

1/17/17

!6

COT 5407 9/4/08

!7 Sorting Algorithms

! SelectionSort
! InsertionSort
! BubbleSort
! ShakerSort
! MergeSort
! HeapSort
! QuickSort
! Bucket & Radix Sort
! Counting Sort

COT 5407 9/4/08

!8 Sorting Algorithms

! Number of Comparisons
! Number of Data Movements
! Additional Space Requirements

COT 5407 1/17/17

!9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assumption: Array A is sorted from [p..q]
and from [q+1..r].

Sentinel Items: Two sentinel items
placed in lists L and R.

Space: Two extra arrays L and R are
used.

Merge: The smaller of the item in L and
item in R is moved to next location in A

Time : O(length of lists)

COT 5407 1/17/17

!10

Page 146, CLRS

QuickSort

COT 5407

Lower Bounds
! It’s possible to prove lower bounds for many comparison-based

problems.
! For comparison-based problems, for inputs of length N, if there are P(N)

possible solutions, then
! any algorithm needs log2(P(N)) to solve the problem.

! Binary Search on a list of N items has at least N + 1 possible solutions.
Hence lower bound is
! log2(N+1).

! Sorting a list of N items has at least N! possible solutions. Hence lower
bound is
! log2(N!) = O(N log N)

! Thus, MergeSort is an optimal algorithm.
! Because its worst-case time complexity equals lower bound!

1/19/17

!11

COT 5407 9/30/08

!12 k-Selection; Median
! Select the k-th smallest item in list
! Naïve Solution

! Sort;
! pick the k-th smallest item in sorted list.
 O(n log n) time complexity

! Idea: Modify Partition from QuickSort
! How?

! Randomized solution: Average case O(n)
! Improved Solution: worst case O(n)

More Dynamic Operations

Se/In/De Rank Select Comments

Balanced BSTs O(log N) O(N) O(N)

Augmented BBSTs O(log N) O(log N) O(log N)

Search Insert Delete Comments

Unsorted Arrays O(N) O(1) O(N)

Sorted Arrays O(log N) O(N) O(N)

Unsorted Linked
Lists O(N) O(1) O(N)

Sorted Linked Lists O(N) O(N) O(N)

Binary Search Trees O(H) O(H) O(H) H = O(N)

Balanced BSTs O(log N) O(log N) O(log N) As H = O(log N)

COT 5407 2/2/17

!14 OS-Rank
OS-RANK(x,y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
1 r = size[left[y]] + 1
2 if x = y then return r
3 else if (key[x] < key[y]) then
4 return OS-RANK(x,left[y])
5 else return r + OS-RANK(x,right[y])

Time Complexity O(log n)

COT 5407 2/2/17

!15 OS-Select

OS-SELECT(x,i) //page 304
// Select the node with rank i
// in the subtree rooted at x
1. r = size[left[x]]+1
2. if i = r then
3. return x
4. elseif i < r then
5. return OS-SELECT (left[x], i)
6. else return OS-SELECT (right[x], i-r)

Time Complexity O(log n)

COT 5407 2/2/17

!16 How to augment data structures

1. choose an underlying data structure
2. determine additional information to be

maintained in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be

maintained for the modifying operations on
the underlying data structure.

COT 5407 2/2/17

!17 Augmenting RB-Trees
Theorem 14.1, page 309
 Let f be a field that augments a red-black tree T with n nodes,

and f(x) can be computed using only the information in
nodes x, left[x], and right[x], including f[left[x]] and f[right[x]].

 Then, we can maintain f(x) during insertion and deletion
without asymptotically affecting the O(log n) performance of
these operations.

For example,
 size[x] = size[left[x]] + size[right[x]] + 1
 rank[x] = ?

COT 5407 2/2/17

!18 Augmenting information for RB-Trees

! Parent
! Height
! Any associative function on all previous

values or all succeeding values.
! Next
! Previous

COT 5407 2/9/17

!19 Approach to DP Problems
! Write down a recursive solution
! Use recursive solution to identify list of

subproblems to solve (there must be overlapping
subproblems for effective DP)

! Decide a data structure to store solutions to
subproblems (MEMOIZATION)

! Write down Recurrence relation for solutions of
subproblems

! Identify a hierarchy/order for subproblems
! Write down non-recursive solution/algorithm

COT 5407 2/9/17

!20 1-d, 2-d, 3-d Dynamic Programming
! Classification based on the dimension of the table

used to store solutions to subproblems.
! 1-dimensional DP

! Activity Problem
! 2-dimensional DP

! LCS Problem
! 0-1 Knapsack Problem
! Matrix-chain multiplication

! 3-dimensional DP
! All-pairs shortest paths problem

CAP 5510 / CGS 5166

1. Recurrence Relations

2/26/19

!21

CAP 5510 / CGS 5166

1. More Recurrence Relations

2/26/19

!22

CAP 5510 / CGS 5166

RB-Trees

2/26/19

!23

CAP 5510 / CGS 5166

Have my cake and eat it too …

2/26/19

!24

CAP 5510 / CGS 5166

Finding k poor students

2/26/19

!25

