
CAP 5510 / CGS 5166

COT 5407: Introduction
to Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/5407S19.html
3/5/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 2/9/17

!2 Approach to DP Problems
! Write down a recursive solution
! Use recursive solution to identify list of

subproblems to solve (there must be overlapping
subproblems for effective DP)

! Decide a data structure to store solutions to
subproblems (MEMOIZATION)

! Write down Recurrence relation for solutions of
subproblems

! Identify a hierarchy/order for subproblems
! Write down non-recursive solution/algorithm

CAP 5510 / CGS 5166

DP Problems

! Find a recursive solution
! For what purpose?
! To reduce the problem to one or more simpler

problems
! reduce the size of the input by imposing conditions
! e.g., if we know something about last item in input or
! e.g., if we know how to break up the problem/solution

3/5/19

!3
Because of
“Optimal

Substructure
Property”

CAP 5510 / CGS 5166

Car removal problem

1. Either the last one is removed …
! We now have a subproblem with only N-1 cars.

! Problem with cars 1, 2, … N-1

2. Or it stays …
! We retain last car, and get a constrained subproblem as we

know that the second to last must match last car.
! Problem with cars 1, 2, … K where K is last car matching car N

3/5/19

!4

CAP 5510 / CGS 5166

List of Subproblems

! This will become clear if we follow the recursion
one or two more steps

! In this case:
! Problems on cars 1, 2, …, k for different values of k

3/5/19

!5

CAP 5510 / CGS 5166

List of Subproblems

! The inputs to the
subproblems are:

 L1 = {c1}
 L2 = {c1, c2}
 L3 = {c1, c2, c3},
 …,
 Ln = set of all cars

! Memoization is thus
obvious:

 A[1] = solution to L1
 A[2] = solution to L2
 A[3] = solution to L3
 …
 A[n] = solution to Ln

3/5/19

!6 May be
refined

later

A[j] = least number of cars to be
removed when the input is Lj

CAP 5510 / CGS 5166

Recurrence Relation for A[j]
1. Either car j is removed …

! We now have a subproblem with only j-1 cars.
! Problem with cars 1, 2, … j-1
! A[j] = 1 + A[j-1]

2. Or it stays …
! We retain last car, and get a constrained subproblem as we

know that the second to last must match last car.
! Problem with cars 1, 2, … K where K is last car matching car j
! A[j] = (j-K-1) + A[K]
! A[j] = (j-K-1) + A[K] A[j] = minK { (j-K-1) + A[K] }

3/5/19

!7

Incorrect
Solution

CAP 5510 / CGS 5166

Why is the solution incorrect?

! We don’t know whether A[j] refers to a
solution that includes car j or not. This will
dictate what car can be appended at the
end of the solution to this subproblem

! For e.g., if input is
! (1,2), (2,3), (3, 4), (2,5), (5,6), (6,7)

3/5/19

!8

CAP 5510 / CGS 5166

Minor change in Memoization

! A[j] = least number of cars to be removed
when the input is Lj and car j is included

! B[j] = least number of cars to be removed
when the input is Lj and car j is not included

3/5/19

!9

CAP 5510 / CGS 5166

Recurrence Relation for A[j], B[j]
1. Either car j is removed …

! We now have a subproblem with only j-1 cars.
! Problem with cars 1, 2, … j-1
! B[j] = 1 + min{ A[j-1], B[j-1] }

2. Or it stays …
! We retain last car, and get a constrained subproblem as

we know that the second to last must match last car.
! Problem with cars 1, 2, … K where K is last car matching car j
! A[j] = min{ (j-K-1) + A[K] }

3/5/19

!10

CAP 5510 / CGS 5166

What to return?

! Min { A[n], B[n] }

3/5/19

!11

CAP 5510 / CGS 5166

Time Complexity

! O(n2)

3/5/19

!12

CAP 5510 / CGS 5166

RB-Trees

3/5/19

!13

COT 5407 2/2/17

!14 OS-Rank
OS-RANK(x,y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
1 r = size[left[y]] + 1
2 if x = y then return r
3 else if (key[x] < key[y]) then
4 return OS-RANK(x,left[y])
5 else return r + OS-RANK(x,right[y])

Time Complexity O(log n)

COT 5407 2/2/17

!15 How to augment data structures

1. choose an underlying data structure
2. determine additional information to be

maintained in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be

maintained for the modifying operations on
the underlying data structure.

COT 5407 2/2/17

!16 Augmenting RB-Trees
Theorem 14.1, page 309
 Let f be a field that augments a red-black tree T with n nodes,

and f(x) can be computed using only the information in
nodes x, left[x], and right[x], including f[left[x]] and f[right[x]].

 Then, we can maintain f(x) during insertion and deletion
without asymptotically affecting the O(log n) performance of
these operations.

For example,
 size[x] = size[left[x]] + size[right[x]] + 1
 rank[x] = ?

Rank cannot be
maintained

because of this
theorem.

COT 5407 2/2/17

!17 Augmenting information for RB-Trees

! Parent
! Height
! Any associative function on all previous

values or all succeeding values.
! Next
! Previous

CAP 5510 / CGS 5166

Augmented Info

! OddSize[v]
! Number of odd valued nodes in subtree rooted at v

! It can be maintained because:
! OddSize[v] =
 OddSize[Left[v]]
 + OddSize[Right[v]]
 + (key[v] % 2)

3/5/19

!18

COT 5407 2/2/17

!19 OS-SoOdd
OS-SoOdd(x,y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
1 r = OddSize[left[y]] + key[x] % 2
2 if x = y then return r
3 else if (key[x] < key[y]) then
4 return OS-SoOdd (x, left[y])
5 else return r + OS-SoOdd (x, right[y])

Time Complexity O(log n)

More Dynamic Operations

Se/In/De Rank Select Comments

Balanced BSTs O(log N) O(N) O(N)

Augmented BBSTs O(log N) O(log N) O(log N)

Search Insert Delete Comments

Unsorted Arrays O(N) O(1) O(N)

Sorted Arrays O(log N) O(N) O(N)

Unsorted Linked
Lists O(N) O(1) O(N)

Sorted Linked Lists O(N) O(N) O(N)

Binary Search Trees O(H) O(H) O(H) H = O(N)

Balanced BSTs O(log N) O(log N) O(log N) As H = O(log N)

