COT 5407: Introduction to Algorithms

Giri NARASIMHAN

Analysis of Dijkstra’s Algorithm

- **O(n)** calls to INSERT, EXTRACT-MIN
- **O(m)** calls to DECREASE-KEY

<table>
<thead>
<tr>
<th>Approach</th>
<th>Insert</th>
<th>Dec-Key</th>
<th>Extract-Min</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQ in Arrays</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n^2)</td>
</tr>
<tr>
<td>Heaps</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O((m+n)log n)</td>
</tr>
<tr>
<td>Fibonacci Heaps</td>
<td>O(1)*</td>
<td>O(1)*</td>
<td>O(log n)*</td>
<td>O(m + n log n)*</td>
</tr>
</tbody>
</table>

* Amortized Time Complexity
Floyd-Warshall’s Algorithm

- $SP_k(u,v)$, shortest paths between u and v that use at most k edges
- Old definition

- $SP_k(u,v)$, shortest paths between u and v that uses intermediate vertices from \{1,2,...,k\}
- New definition
Recurrence Relation

- **Old Relation**
 \[SP_k(u,v) = \min (SP_{k-1}(u,v), \min_w \{SP_{k-1}(u,w) + SP_1(w,v)\}) \]

- **New Relation**
 \[SP_k(u,v) = \min (SP_{k-1}(u,v), SP_{k-1}(u,k) + SP_{k-1}(k,v)) \]
Floyd-Warshall: Improved APSP

O(n³) time complexity
Figure 25.4 The sequence of matrices $D^{(k)}$ and $\Pi^{(k)}$ computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.
Figure 14.38
Worst-case running times of various graph algorithms

<table>
<thead>
<tr>
<th>Type of Graph Problem</th>
<th>Running Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>Weighted, no negative edges</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>Weighted, negative edges</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>Weighted, acyclic</td>
<td>$O(</td>
<td>E</td>
</tr>
</tbody>
</table>
NP-Completeness
Polynomial-time computations

- An algorithm has time complexity $O(T(n))$ if it runs in time at most $cT(n)$ for every input of length n.
- An algorithm is a polynomial-time algorithm if its time complexity is $O(p(n))$, where $p(n)$ is polynomial in n.
Polynomials

- If $f(n) = \text{polynomial function in } n$, then $f(n) = O(n^c)$, for some fixed constant c
- If $f(n) = \text{exponential (super-poly) function in } n$, then $f(n) = \omega(n^c)$, for any constant c
- Composition of polynomial functions are also polynomial, i.e., $f(g(n)) = \text{polynomial if } f()$ and $g()$ are polynomial
- If an algorithm calls another polynomial-time subroutine a polynomial number of times, then the time complexity is polynomial.
The class \mathcal{P}

- A problem is in \mathcal{P} if there exists a polynomial-time algorithm that solves the problem.

Examples of \mathcal{P}

- **DFS**: Linear-time algorithm exists
- **Sorting**: $O(n \log n)$-time algorithm exists
- **Bubble Sort**: Quadratic-time algorithm $O(n^2)$
- **APSP**: Cubic-time algorithm $O(n^3)$

\mathcal{P} is therefore a class of problems (not algorithms)!
The class \(\text{NP} \)

- A problem is in \(\text{NP} \) if there exists a non-deterministic polynomial-time algorithm that solves the problem.
- A problem is in \(\text{NP} \) if there exists a (deterministic) polynomial-time algorithm that verifies a solution to the problem.
- All problems that are in \(\text{P} \) are also in \(\text{NP} \)
- All problems that are in \(\text{NP} \) may not be in \(\text{P} \)
TSP: Traveling Salesperson Problem

- **Input:**
 - Weighted graph, G
 - Length bound, B

- **Output:**
 - Is there a traveling salesperson tour in G of length at most B?
 - Is TSP in UP?
 - YES. Easy to verify a given solution.
 - Is TSP in P?
 - OPEN!
 - One of the greatest unsolved problems of this century!
 - Same as asking: Is $P = UP$?
So, what is **NP-Complete**?

- **NP-Complete** problems are the “hardest” problems in **NP**.
- We need to formalize the notion of “hardest”.
Terminology

- **Problem:**
 - An *abstract problem* is a function (relation) from a set I of instances of the problem to a set S of solutions.

 $$p: I \rightarrow S$$

 - An *instance* of a problem p is obtained by assigning values to the parameters of the abstract problem.

 - Thus, describing set of all instances (i.e., possible inputs) and set of corresponding outputs defines a problem.

- **Algorithm:**
 - An algorithm that solves problem p must give correct solutions to all instances of the problem.

- **Polynomial-time algorithm:**
Terminology (Cont’d)

- **Input Length:**
 - Length of an encoding of an instance of the problem.
 - Time and space complexities are written in terms of it.

- **Worst-case time/space complexity of an algorithm**
 - Is the maximum time/space required by the algorithm on any input of length \(n \).

- **Worst-case time/space complexity of a problem**
 - **UPPER BOUND:** worst-case time complexity of best existing algorithm that solves the problem.
 - **LOWER BOUND:** (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
 - **LOWER BOUND \(\leq \) UPPER BOUND**

- **Complexity Class \(\mathcal{P} \):**
 - Set of all problems \(p \) for which polynomial-time algorithms exist
Terminology (Cont’d)

Decision Problems:
- These are problems for which the solution set is \{yes, no\}
- Example: Does a given graph have an odd cycle?
- Example: Does a given weighted graph have a TSP tour of length at most B?

Complement of a decision problem:
- These are problems for which the solution is “complemented”.
- Example: Does a given graph \textbf{NOT} have an odd cycle?
- Example: Is every TSP tour of a given weighted graph of length greater than B?

Optimization Problems:
- These are problems where one is maximizing (or minimizing) some objective function.
- Example: Given a weighted graph, find a MST.
- Example: Given a weighted graph, find an optimal TSP tour.

Verification Algorithms:
- Given a problem instance \(i\) and a certificate \(s\), is \(s\) a solution for instance \(i\)?
Terminology (Cont’d)

- **Complexity Class \(\mathcal{P} \):**
 - Set of all problems \(p \) for which polynomial-time algorithms exist.

- **Complexity Class \(\mathcal{NP} \):**
 - Set of all problems \(p \) for which polynomial-time verification algorithms exist.

- **Complexity Class \(\text{co-}\mathcal{NP} \):**
 - Set of all problems \(p \) for which polynomial-time verification algorithms exist for their complements, i.e., their complements are in \(\mathcal{NP} \).
Terminology (Cont’d)

▶ Reductions: $p_1 \rightarrow p_2$

▶ A problem p_1 is reducible to p_2, if there exists an algorithm R that takes an instance i_1 of p_1 and outputs an instance i_2 of p_2, with the constraint that the solution for i_1 is YES if and only if the solution for i_2 is YES.

▶ Thus, R converts YES (NO) instances of p_1 to YES (NO) instances of p_2.

▶ Polynomial-time reductions: $p_1 \p p_2$

▶ R
 - If $p_1 \p p_2$, then
 - If p_2 is easy, then so is p_1. $p_2 \in \mathcal{P} \Rightarrow p_1 \in \mathcal{P}$
 - If p_1 is hard, then so is p_2. $p_1 \notin \mathcal{P} \Rightarrow p_2 \notin \mathcal{P}$
What are $\textit{NP-Complete}$ problems?

- These are the hardest problems in \textit{NP}.
- A problem p is $\textit{NP-Complete}$ if
 - there is a polynomial-time reduction from every problem in \textit{NP} to p.
 - $p \in \textit{NP}$

How to prove that a problem is $\textit{NP-Complete}$?

- **Cook’s Theorem:** [1972]
 - The \textit{SAT} problem is $\textit{NP-Complete}$.

 Steve Cook, Richard Karp, Leonid Levin
NP-Complete vs NP-Hard

- A problem p is **NP-Complete** if
 - there is a polynomial-time reduction from every problem in NP to p.
 - $p \in \text{NP}$

- A problem p is **NP-Hard** if
 - there is a polynomial-time reduction from every problem in NP to p.
The SAT Problem: an example

- Consider the boolean expression:
 \[C = (a \lor \neg b \lor c) \land (\neg a \lor d \lor \neg e) \land (a \lor \neg d \lor \neg c) \]
- Is \(C \) satisfiable?
- Does there exist a True/False assignments to the boolean variables \(a, b, c, d, e \), such that \(C \) is True?
- Set \(a = \text{True} \) and \(d = \text{True} \). The others can be set arbitrarily, and \(C \) will be true.
- If \(C \) has 40,000 variables and 4 million clauses, then it becomes hard to test this.
- If there are \(n \) boolean variables, then there are \(2^n \) different truth value assignments.
- However, a solution can be quickly verified!
The SAT (Satisfiability) Problem

- **Input:** Boolean expression \(C \) in Conjunctive normal form (CNF) in \(n \) variables and \(m \) clauses.
- **Question:** Is \(C \) satisfiable?

Let

\[
C = C_1 \land C_2 \land \ldots \land C_m
\]

Where each \(C_i \) =

And each \(\in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\} \)

We want to know if there exists a truth assignment to all the variables in the boolean expression \(C \) that makes it true.

Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine \(T \) accepts an input \(w \) or not can be written as a boolean expression \(C_T \) for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of \(T \) and \(w \).

- How to now prove Cook’s theorem? Is SAT in \(NP \)?
- Can every problem in \(NP \) be poly. reduced to it?
The problem classes and their relationships

- \(\text{co-NP} \)
- \(\text{P} \)
- \(\text{NP} \)
- \(\text{NP-C} \)
More **NP-Complete** problems

3SAT

- **Input:** Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.

- **Question:** Is C satisfiable?

 - Let $C = C_1 \land C_2 \land \ldots \land C_m$

 - Where each $C_i = (y_1 \lor y_2 \lor y_3)$

 - And each $y_j \in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\}$

 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

3SAT is NP-Complete.
More *NP-Complete* problems?

2SAT

- **Input**: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.

- **Question**: Is C satisfiable?

 Let $C = C_1 \wedge C_2 \wedge \ldots \wedge C_m$

 Where each $C_i =$

 And each $\in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\}$

 We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

*2SAT is in P.***
3SAT is **NP-Complete**

- 3SAT is in **NP**.
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in **NP** can be reduced in polynomial time to 3SAT. Therefore, 3SAT is **NP-Complete**.
- So, we have to design an algorithm such that:
 - Input: an instance C of SAT
 - Output: an instance C’ of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C’ is satisfiable.
3SAT is \textbf{NP-Complete}

- Let C be an instance of SAT with clauses C_1, C_2, \ldots, C_m
- Let C_i be a disjunction of $k > 3$ literals.
 \[C_i = y_1 \lor y_2 \lor \ldots \lor y_k \]
- Rewrite C_i as follows:
 \[C_i' = (y_1 \lor y_2 \lor z_1) \land (\neg z_1 \lor y_3 \lor z_2) \land (\neg z_2 \lor y_4 \lor z_3) \land \ldots \land (\neg z_{k-3} \lor y_{k-1} \lor y_k) \]
- Claim: C_i is satisfiable if and only if C_i' is satisfiable.
2SAT is in \mathcal{P}

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework problem!
The CLIQUE Problem

• A **clique** is a completely connected subgraph.

CLIQUE

- **Input:** Graph $G(V,E)$ and integer k
- **Question:** Does G have a clique of size k?
CLIQUE is **NP-Complete**

- CLIQUE is in **NP**.
- Reduce 3SAT to CLIQUE in polynomial time.
- \(F = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3) \)

F is satisfiable if and only if **G** has a clique of size \(k \) where \(k \) is the number of clauses in **F**.
Vertex Cover

A vertex cover is a set of vertices that "covers" all the edges of the graph.

Examples
Vertex Cover (VC)

Input: Graph G, integer k
Question: Does G contain a vertex cover of size k?
- VC is in \(\text{NP} \).
- polynomial-time reduction from CLIQUE to VC.
- Thus VC is \(\text{NP-Complete} \).

Claim: \(G' \) has a clique of size \(k' \) if and only if \(G \) has a VC of size \(k = n - k' \).
Hamiltonian Cycle Problem (HCP)

Input: Graph G

Question: Does G contain a *hamiltonian* cycle?

- HCP is in NP.
- There exists a polynomial-time reduction from 3SAT to HCP.
- Thus HCP is NP-Complete.

Notes/animations by a former student, Yi Ge!