	R1(G) mment: Go through the adjacency list Some initialization here for each vertex $u \in V$ do for each vertex $v \in Adj[u]$ do Process edge (u, v)	VE 1 2 3 4 5 6	(-)
$\operatorname{Ver2}(G,w)$ V		Ve	${ m R4}(G,u)$
1	Initialize matrix of values $M[i, j]$	1	$color[u] \leftarrow gray$
2	for $k \leftarrow 1$ to n do	2	VISITVERTEX(u)
4	for $i \leftarrow 1$ to n do	3	for each vertex $v \in Adj[u]$ do
5	for $j \leftarrow 1$ to n do	4	VISITEDGE(u, v)
6	Process recurrence for $M[i, j_{4}]$		
		5	$\pi[v] \leftarrow u$
		6	Ver4(G, v)
		9	$color[u] \leftarrow \text{BLACK}$

Figure 1: Graph Algorithms

- 1. Compute in-degree and out-degree of a given directed graph.
- 2. Compute the **transpose** of a directed graph.
- 3. Compute the **complement** of an undirected graph.
- 4. Compute the **square** of a directed graph.
- 5. Find an algorithm that can help you get out of a maze given a sufficiently large number of pennies.
- 6. Design an efficient algorithm to update the MST if
 - (a) the weight of an edge not in the tree decreases
 - (b) the weight of a tree edge increases
 - (c) an edge is added to the graph with a given weight
 - (d) a node is deleted from the graph along with all incident edges
 - (e) a node is inserted into the graph along with some additional edges
 - (f) weight of every edge is increased by amount d.
 - (g) weight of every edge is decreased by amount d.
 - (h) if you subdivide an existing edge and introduce a new vertex on it.

- 7. Solve the previous problem, but replacing MST with the shortest path tree for a specific source vertex s.
- 8. What is the time complexity of each graph algorithm if the edge weights come from a fixed range of integers [1..c] (c is a fixed constant).
- 9. Show how to modify Floyd-Warshall's algorithm to compute reachability between every pair of vertices in a directed graph. Is this the most efficient way to compute reachability?
- 10. Short Questions
 - (a) What is better for sparse graphs adjacency lists or adjacency matrices?
 - (b) What is the time complexity of checking if an edge (u, v) exists in the two representations?
 - (c) Argue that BFS is the same as Dijkstra's algorithm for unweighted graphs.
 - (d) What is the difference betwee the following: *DFS-tree*, *BFS-tree*, *SpanningTree*, *MST*, *SP-tree*
 - (e) Why do you need to use the Disjoint-Set data structure to implement Kruskal's algorithm?
 - (f) Use Theorem 23.1 to argue that Prim's algorithm is correct.
 - (g) Is a minimum-weight edge always part of a MST?
 - (h) Is the maximum-weight edge always not missing from a MST?
 - (i) Explain why subpaths of shortest paths must be shortest paths too.
 - (j) Explain how Dijkstra's algorithm is a form of DP.
 - (k) Explain how Floyd-Warshall's algorithm is a form of DP.
 - (l) Define the classes $\mathcal{P}, \mathcal{NP}, \mathcal{C} \subset \mathcal{NP}, \mathcal{NP} Complete$.
 - (m) Define a reduction and explain why it is useful to prove \mathcal{NP} -Completeness.
 - (n) What was the first problem ever shown to be $\mathcal{NP} Complete$.
 - (o) What is a polynomially-verifiable problem? How is is different from polynomiallysolvable problems? Give an example of each.
 - (p) What is 2-SAT? Is it $\mathcal{NP} Complete$?