From DNA Recombination to DNA
Computing
Via Formal Languages

Gheorghe Paun

Institute of Mathematics of the Romanian Academy

PO Box 1-764, 70700 Bucuresti, Romania

Arto Salomaa

Academy of Finland and Turku University
Department of Mathematics, 20014 Turku, Finland

— . — Turku Centre for Computer Science
TUCS Technical Report No 43

= =1 September 1996

=
e =g ISBN 951-650-836-7
TUCS ISSN 1239-1891

Abstract

We briefly present notions and results from three directions of research which
use formal language theory tools for modelling operations specific to DNA
(and RNA) recombinations; in all cases one obtains computability models
which are universal (language generating devices are obtained which are
equivalent in power with Turing machines). The basic operations are those
of matching (a model of the Watson-Crick complementarity), of splicing (a
model of the recombinant behaviour of DNA sequences under the influence
of restriction enzymes), and of insertion/deletion (known to hold both for

DNA and for RNA sequences).

TUCS Research Group

Mathematical Structures of Computer Science

1 Matching systems

The matching systems introduced in [10] start from the basic ingredient of
Adleman’s successful experiment of computing a Hamiltonian path in a graph
by handling DNA sequences, [1], the operation of prolonging a sequence of
(single or double) symbols by using given single stranded strings, matching
them with portions of the current sequence according to a complementarity
relation. We do not repeat here the details of [1], but introduce directly our
model.

Consider an alphabet V (a finite set of abstract symbols) augmented with
a symmetric relation p (of complementarity), p C V x V. Consider also a
special symbol, #, not in V, denoting an empty space (the blank symbol).

Using the elements of V U {#} we construct the composite symbols of the
following sets:

(v) = {()1ebe Vi@ es),
() = () 1eev),
;

)= {G)1aev)

We denote
\%

W)= (1) s,

=2 o 3)

and we call the elements of W (V') well-started sequences. Stated otherwise,
the elements of W (V') start with pairs of symbols in V, as selected by the
complementarity relation, and end either with a suffix consisting of pairs
of the form (f) or with a suffix consisting of pairs (i), for a,b € V (the

symbols (f), (;) are not mixed).

The matching operation, denoted by y, is a partially defined mapping
from W(V) x S(V) to W(V), defined as suggested in Figure 1: In case 1 we
add complementary symbols on the lower level, possibly without completing
all the blank spaces, in case 2 we complete the blank spaces on the lower
level of and we still add some composite symbols of the form (ﬁf) Cases

where

3 and 4 are symmetric, completing blank spaces on the upper level of the
string. In all cases the string y must contain at least one composite symbol.
In cases 2 and 4 we also allow the prolongation of “blunt” strings in W (V),

1

that is with no blank position in . Of course, for strings =,y which do not
fulfil the previous conditions, u(x,y) is not defined.

We define here formally the string p(z,y) only in the first case, the others
are similar. For z € W(V),y € S(V),z € W(V) we write u(z,y) = z if

() G5 () () - (5,

(7))
= () G0 (o) (o) o ().

fork>0r>1p>lq, eV 1<i<k+4+r+p beV, <1<k,
¢ € V.1 <i<r and (aryi,¢) €p, 1 <<,

T

y

T
Case 1:
Yy
x
Case 2: \—“—1
Ty
T Yy
Case 3: ,—\\:| |
T Yy
Case 4 | l
Figure 1

Using the matching operation we can define a generative/computing
mechanism as follows. A matching system is a construct

7= (V7p7T7 f7gaA7 Bd7 Bu)7
where V' is an alphabet, p C V x V' is a symmetric relation on V', 7" is an
alphabet, f : T'— T U{\} is a weak coding, g : T* — (“;) is a morphism,
A is a finite subset of W(V) (of axioms), and By C (*‘%)—I—, B, C (;;)—I—

The idea behind considering such a machinery is the following. We start
with the sequences in A and we prolong them to the right hand according
to the strings in By, By, using the matching operation (the elements of By
are used on the lower row, down, and those of B, are used on the upper

2

row). When no blank symbol is present, we associate a string in 7* to the
sequence obtained, by means of the mappings f,g: by g=' we map blocks
of the sequence into symbols of T', then certain symbols are erased by f or
renamed. The language of all such strings is the language generated by ~.

Formally, we define this language as follows. For two strings x,z € W (V)
we write

r =z iff z=p(z,y) for some y € By U B,.

We denote by =* the reflexive and transitive closure of the relation =.
A sequence 1 = 19 = ... = x},x1; € A, is called a computation in
v (of length k —1). A computation as above is complete when zj € (g)* (no
blank symbol is present in the last string of composite symbols).
The language generated by v, denoted by L(7), is defined by

L) = (g™ () |« =" w, e Awe ()}

Therefore, only the complete computations are taken into account when
defining L(v). Note that a complete computation can be continued, because
we allow prolongations starting from blunt sequences.

One sees the close resemblance with the operations used in the Adleman
experiment: By corresponds to the codes of graph nodes, B, corresponds
to the complementary strings identifying the arrows in the graph (or con-
versely), the morphism g, by its associated inverse morphism ¢~', assigns
a “meaning” to the blocks corresponding to the graph nodes in the dou-
ble stranded sequences. The use of such an inverse morphism cannot be
avoided if we want to remain close to DNA manipulation by Watson-Crick
complementarity, because we have to codify the information using blocks of
nucleotides (not by single nucleotides). The fact that we use here also a given
set of axioms and a weak coding f adds flexibility to the model and makes
it more similar to usual generative mechanisms investigated in the formal
language theory.

A complete computation 1 = 1y, = ... = x), 11 € A, 1} € G:)*,
with respect to v, is said:

— primitive if no properly initial part of it is complete;

— balanced if in each step x; = x;1; one uses a matching operation
corresponding to cases 2 or 4 in Figure 1, namely alternating from a
step to the next one (from a step to the next one we have to change
the set By, B, from which we take the used string).

Thus, in a primitive computation we do not use matching operations as
in cases 1 — 4 with p = 0, except in the last step.

Let us denote by L,(v),Ls(7), Lyp(y) the language of the strings
f(g~!(w)), for w obtained by a complete computation in v which is primitive,
balanced, respectively both primitive and balanced.

Assume now that the strings in the sets By, B, are labelled in a one-to-
one manner by natural numbers from 1 to card(B,), a € {d,u}; denote by
€q: By — {l,... card(B,)}, @ € {d, u}, the labellings. For a computation
D:xy = vy = ...2p, v1 € A, with x}, € G)*, and for 1 <7< k-1, we
denote

. . — ea(y)a if Tj+1 = M(xjay)vy € Bon
cal®; = Tin1) = { A, otherwise,

and we define
ea(D) = ex(x) = 22)eq(xg = 23) . .. €a(Th_1 = x1),

for a € {d,u}. We say that e;(D) is the d-control word and e,(D) is the
u-control word associated with D.

A computation D such that e;(D) = e,(D) is called coherent. When
lea(D)| = |ew(D)| (where |z| is the length of the string x) we say that D is a
fair computation.

We denote by L.(7), L;(v) the languages of the strings f(¢~*(w)), for w
obtained by a coherent complete computation, respectively, by a fair complete
computation in 7.

We denote by ML, PML, BML, PBML, CML, FML the families of lan-
guages of the form L(v), L,(¥), Ls(7), Lpp(7), Le(7), Ls(7), respectively, de-
fined as above.

Proofs of the following results can be found in [10] (REG, CF, CS, RE are
the four families in Chomsky hierarchy, FIN is the family of finite languages).

Theorem 1. REG =ML =PML=BML =PBML.

(The Adleman way of computing cannot transgress the power of finite au-
tomata.)

Theorem 2. RE =CML.

(The coherence restriction proves to be very powerful, leading to univer-
sal computability. The proof of this result is based on characterizations of
recursively enumerable languages starting from equality sets, see, e.g., [25].)
The fair computations lead to an intermediate case:

Theorem 3. REG C FML C RE.

2 Splicing systems

When two enzymes cut (at sites defined by well-specified associated patterns)
two DNA (double stranded) sequences, leaving sticky ends which match (the
single stranded ends are complementary in the Watson-Crick sense), then
the obtained fragments can be recombined (by ligasion). The formal model
of this phenomenon is the splicing operation, introduced in [§].

Consider an alphabet V and two special symbols, #,$, not in V. A
splicing rule (over V) is a string r = w1 F#uaSus#us, where u; € V1 <i < 4.
For such a rule r and strings z,y,z € V* we define

('ray) Bz il 2= z1uugxe, ¥ = yrusuays,

*
Z = riuiuglyy, for some xy, x9, Y1,y € V™.

A pair 0 = (V, R), where V is an alphabet and R C V*#V*§V*#V* is called
an H scheme. For an H scheme o = (V, R) and a language L C V*, we define

)

(L)={z€e V™| (x,y) . =z, for some z,y € L,r € R},
°%L) =L, o™ (L) = o' (L) U a(a'(L)), i >0,
(L) =Ua'(L).

>0

Q qQ

In this way we obtain two operations with languages, o (one-step splic-
ing) and o* (iterated splicing). Their properties (relationships with other
operations and closure properties of abstract families of languages — hence
also of families in Chomsky hierarchy) are relatively well undersood. The
reader can find a survey of results and bibliographical information in [13].
We only mention two results:

Lemma 1. ([5], [24]) If 0 = (V, R) has a finite set R and L € REG,
then o*(L) € REG.

Lemma 2. ([19]) Let F be a family of languages closed under intersection
with regular languages and restricted morphisms. For any L C V* L ¢ F,
and ¢,d ¢ V', consider the language

L' = (de)*L(de)* U e(de)* L(de)*d.

Then there is no H scheme o = (V| R), no matter which is the type of R,
and Lo € F such that L' = 0*(Ly).

The previous two lemmas show that the splicing alone cannot provide
characterizations of “large” families of languages. However, a simple squeez-
ing mechanism, as usual in Chomsky grammars and in Lindenmayer systems,

5

can fill in this gap. This leads to the appealing notion of an extended H sys-
tem, as introduced in [21].

Such a system is a quadruple v = (V, T, A, R), where V is an alphabet,
T C V (terminal symbols), A C V* (axiom set), and R C V*#V*§V*#V*
for #,$ not in V; o0 = (V, R) is the underlying H scheme of v. The language
generated by v is defined by

L(v)=0"(A)NT".

For two families of languages, Fi, Iy, we denote by FH (Fi, F;) the family
of languages L(y), for v = (V,T, A, R) with A € F} and R € F; (note that
both A and R are sets of strings, i.e. languages, hence the definition makes
sense).

Two important results about these families are:

Lemma 3. EH(FIN, FIN) = REG.
Lemma 4. (The Basic Universality Theorem) EH(FIN, REG) = RE.

Lemma 3 follows from Lemma 1 and the closure of REG under intersec-
tion, Lemma 4 is proved in [15]. The simple step from finite sets of splicing
rules to regular sets entails the jump from REG to RE.

From the proof of the Basic Universality Theorem one can see that an
equality as that in Lemma 4 can be obtained by using extended H systems
with finite sets of splicing rules, having associated control mechanisms of the
following types:

— permitting contexts (pc): each rule is given in a triple (r; Cy, Cy), where
C1,Cy are sets of symbols; a splicing (z,y) -, z is allowed only when
all symbols in € appear in z and all symbols in Cy appear in y;

— forbidding contexts (fc): as above, but no symbol of C; should appear
in z and no symbol of (5 should appear in y;

— local targets (It): each rule is given as a pair (r, @), where @) is a regular
set, and (z,y) F, z is allowed only if z € Q;

— global targets (gt): as above, with all target languages being equal;
— fitness mapping (fit): a mapping ¢ : V* — [0, 1] is given (actually, it
is enough to have ¢ : V* — {0,1}) and (z,y) F, z is allowed only for

x,y with high enough values of ¢(z), ¢(y) (this resembles considerations
in the area of genetic algorithms).

6

Denoting by FH(Fi,aF3) the family of languages L(7), for v an extended
H system with the axiom set in family £} and the rule set in family F3, with
the use of rules controlled according to a, o € {pc, fec,lt, gt, fit}, we get

Theorem 4. EH(FIN,aFIN) = RE, a € {pc, fc,lt, gt, fit}.

Moreover, from the proof we find that universal H systems of the previous
types can be constructed, that is systems ~, with all components fixed and
able to simulate any given H system ~, after adding a code of the particular
system v to the axiom set of 7, (so, v can be “run” on 7,, the “program”
being a single new axiom added to the “computer” 4,). This looks quite
encouraging — from a theoretical point of view — in what concerns the pos-
sibility of designing universal (hence programmable) DNA computers based
on the splicing operation.

Proofs of the results summarized in Theorem 4 can be found in [7], [18],
[22].

A very fruitful idea of how to reach the power of Turing machines us-
ing only finitely many splicing rules is the distributed computing, following
suggestions from grammar system area. Particularly useful are the paral-
lel communicating grammar systems introduced in [23] (see also [2]). They
consist of several usual grammars (the components of the system) working
synchronously on their own sentential forms (in each time unit each com-
ponent uses a rewriting rule), and communicating, on request (this variant
has been considered in [23]) or by command (a variant introduced in [4]).
Communication has priority over rewriting. A component is designated as
the master of the system and the language it generates, with the help of the
other components, is the language of the system.

A direct counterpart of such a model are the splicing grammar systems
introduced in [6]: the components are usual context-free Chomsky grammars;
they rewrite their sentential forms as in a usual PC grammar system (compo-
nentwise, synchronously, starting from specific axioms) and “communicate”
by splicing the sentential forms according to a given finite set of splicing
rules; the splicing does not have priority over rewriting.

Denoting by SGS,(X) the family of languages generated by splicing
grammar systems with at most n,n > 1, components, using rewriting rules
of type X, we get

Theorem 5. ([14]) CF = SGS{(CF) C SGS,(CF) = RE.

These systems are quite hybrid, involving both rewriting and splicing
operations. In communicating distributed H systems, introduced in [3], we
use only splicing.

Such systems have as components triples of the form (A;, R;, V;), where

7

A; are finite sets of axioms, R; are finite sets of splicing rules, and V; are
sets of symbols. The components work separately, on their contents, which
initially are the sets A;, according to the splicing schemes o; = (V. R;) (V is
the alphabet of the system). This means an iterated splicing of the type o}.
The communication is done in the WAVE style: in each moment, each string
x produced by a component 7 is transmitted to any component j for which
we have x € V" (we say that x passes the filter defined by V}). Copies of =
are sent to all components j for which @ € V;*. The contents of a designated
component contribute to the language generated by the system.

Let us denote by C' DS, the family of languages generated by such systems
with at most n,n > 1, components (all components being finite).

Theorem 6. C DS, C REG C CDS;, CDS;—CF # (), CDSg contains

non-recursive languages, C' DS19 = RE.

The equality C DS1p = RE has been proved in [27]; in [3] it is only proved
that RE =, CDS,,.

Another distributed H system is introduced in [16] (synchronized dis-
tributed H systems), with the components having two types of axioms and
of current strings — active and non-active — and two types of splicing rules
— internal and external. The external rules act, with priority over the inter-
nal rules, on active strings only. We do not enter into details, but we only
mention that denoting by SDS,, the family of languages generated by such
systems with at most n,n > 1, components, we get

Theorem 7. SDS; = RE.

From the proofs of all these results we again obtain the existence of uni-
versal (hence programmable) H systems of the mentioned types.

3 Insertion/deletion systems

It is known that evolution is determined not only by recombination (cross-
overing), but also by local mutations, insertions and deletions of symbols or
short strings in (from) the DNA sequences. Such operations are well-known
in formal language theory; see details, for instance, in [20]. Using them,
interesting generative devices can be defined. We present them in the form
considered in [11].

An insertion-deletion (shortly, insdel) system is a construct

7: (V7T7A7[7D)7

where V' is an alphabet, T' C V', A is a finite subset of V*, and I, D are finite
subsets of V* x V* x V*.

The alphabet T is the terminal alphabet of v, A is the set of axioms,
I is the set of insertion rules, and D is the set of deletion rules. An inser-
tion/deletion rule is given in the form (u, z,v).

For z,y € V* we write xt = y iff one of the following two cases holds:

l. = zuvey, y = ruzves, for 1,29 € V*, (u,z,v) € I (an insertion
step);

2. x = 2uzvxe, Yy = TUVTy, for 1,20 € V| (u,z,v) € D (a deletion
step).

Denoting by =" the reflexive and transitive closure of the relation =,
the language generated by ~ is defined by

L(v)={weT" |z =" w, for some z € A}.

An insdel system v = (V,T, A, I, D) is said to be of weight (n,m,p, q) if

max{|z| | (u,z,v) € [} =n,
max{|u| | (u,z,v) € [or (v,z,u) € [} =m,
max{|z| | (u,z,v) € D} = p,
max{|u| | (u,z,v) € D or (v,z,u) € D} = q.

We denote by INST"DEL?, n,m,p,q > 0, the family of languages L(y)
generated by insdel systems of weight (n', m/, p’, ¢') such that n’ < n, m’ < m,
p < p, ¢ < q. When one of the parameters n,m,p,q is not bounded, we
replace it by co. Thus, the family of all insdel languages is INSXDELZ.
Rules of the form (u, A, v) are of no use, hence we ignore them. Thus, when
n=0(p=0), then m =0 (¢ =0).

In [12] one proves that:

(i). Each language L € RE can be written in the form L = g(h™'(L")), for
a morphism h, a weak coding g, and L € INS]DELSJ.

(ii). RE = INS2DELS.

In fact, in [12] no attention is paid to the length of contexts or of the
inserted/deleted strings. By carefully observing such restrictions, in [11],
one proves:

Theorem 8. RE = INS2DEL! = INSIDELS = INS?!DELS.

In the molecular computing framework we deal with a restricted number
of symbols Moreover, the insertion/deletion of some of these symbols is easier

9

than for other symbols. Thus it is of practical interest to consider insdel
systems with rules of the form (u,z,v) with z € ¢* for a specified symbol
c. In [26] one explicitly asks whether or not such systems can simulate any
given Turing machine. Of course, because we can no longer introduce or erase
symbols different from ¢, we must start with them introduced from the very
beginning as a sort of workspace, whereas the result of a rewriting (we may
also call it a computation) should be also embedded in a specified workspace.
In such conditions, it is proved in [11] that the problem in [26] has a positive
answer. Moreover, we can work with only one symbol different from ec.
Specifically, a restricted insdel system is a construct

7 = (V7 {a7 c}? A? [7 D7 h)?

where V' is an alphabet, a, ¢ are specified symbols (not necessarily from V'),
A is a finite subset of {a, c}*, I, D are finite subsets of {a, c}* x ¢* x {a, c}*,
and h : V* — {a, c}* is a morphism. (Note that all insertion-deletion rules
are of the form (u,c',v),u,v € {a,c}*,i > 0.) The relation = is defined in
the usual way, over {a, c}*. Then, the language generated by v is

L(v) = h ' ({w € {a,c}* | z(aca)” =* (aca)™w, for somen,m >0,z € A}.

In words, we start from an axiom z € A, prolonged with an arbitrary number
of “empty spaces” aca, we use arbitrarily many insertion/deletion rules, we
discard the “spaces” aca placed to the left hand end of the obtained string,
and we map by hA~! the remaining string into a string in V*. In this way,
strings w for which 27! (w) is not defined are removed, hence we can ensure
the termination of the derivation in the same way as when using a specified
terminal alphabet.

We denote by 1INSDEL the family of languages generated by restricted
insdel systems of arbitrary weight; because we work here with a codification
of strings over V as strings over {a, ¢}, we cannot keep bounded (independent
of the cardinality of V, for instance) the weight of the used systems.

Expected from the point of view of Theorem 7 and encouraging from
DNA/RNA computing point of view, we have the following result.

Theorem 9. RE =1INSDFEL.

On the basis of the proofs of theorems above, universal insdel systems
can be found, in the natural way.

4 Concluding remarks

We cannot enter here into details concerning the formal definitions and the
proofs of the results mentioned above, or into a discussion concerning the

10

biochemical feasibility or unfeasibility of these models. Many features in-
volved in these models look realistic: the hybridization and the prolongation
operations involved in the matching systems are well controlled operations,
the length of sites where the splicing is performed can be bounded by two,
checking permitting conditions can be done by using primers which start the
hybridization of single stranded DNA sequences making possible the enzyme
action on the obtained double stranded sequence, intersection with 7™ is a
separate operation already used in laboratory, new copies of a sequence can
be produced by PCR amplification, insertion can be realized by mismatch-
ing hybridization, etc. Other features (in general, the control of operations
considered above) are far from the present day lab possibilities.

Acknowledgement: Research supported by the Academy of Finland,
Project 11281

References

[1] L. M. Adleman, Molecular computation of solutions to combinatorial

problems, Science, 226 (Nov. 1994), 1021 — 1024.

[2] E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Paun, Grammar Systems.
A Grammatical Approach to Distribution and Cooperation, Gordon and

Breach, London, 1994.

[3] E.Csuhaj-Varju, L. Kari, Gh. Paun, Test tube distributed systems based
on splicing, Computers and Al, 15, 2-3 (1996), 211 — 232.

[4] E. Csuhaj-Varju, J. Kelemen, Gh. Paun, Grammar systems with WAV E-

like communication, Computers and Al to appear.

[5] K. Culik II, T. Harju, Splicing semigroups of dominoes and DNA, Dis-
crete Appl. Math., 31 (1991), 261 — 277.

[6] J. Dassow, V. Mitrana, Splicing grammar systems, Computers and Al
15, 2-3, (1996), 109 — 122.

[7] R. Freund, L. Kari, Gh. Paun, DNA computing based on splicing: The
existence of universal computers, Technical Report 185-2/FR-2/95, TU
Wien, 1995.

[8] T. Head, Formal language theory and DNA: an analysis of the genera-
tive capacity of specific recombinant behaviors, Bull. Math. Biology, 49
(1987), 737 — 759.

11

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

T. Head, Gh. Paun, D. Pixton, Language theory and molecular genetics.
Generative mechanisms suggested by DNA recombination, in Handbook
of Formal Languages (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag,
Berlin, Heidelberg, in preparation.

L. Kari, Gh. Paun, G. Rozenberg, A. Salomaa, S. Yu, DNA computing
by using matching systems, submitted, 1996.

L. Kari, Gh. Paun, G. Thierrin, S. Yu, Characterizing RE using

insertion-deletion systems, submitted, 1996.

C. Martin-Vide, Gh. Paun, A. Salomaa, Characterizations of recursively
enumerable languages by means of insertion grammars, submitted, 1996.

Gh. Paun, Splicing. A challenge to formal language theorists, Bulletin
FATCS, 57 (1995), 183 — 194.

Gh. Paun, On the power of splicing grammar systems, Ann. Univ. Buec.,

Matem.-Inform. Series, 45, 1 (1996).

Gh. Paun, Regular extended H systems are computationally universal,
J. Aut., Languages, Combinatorics, 1, 1 (1996), 27 — 36.

Gh. Paun, Computationally universal distributed systems based on the
splicing operation, submitted, 1995.

Gh. Paun, Universal DNA computing models based on the splicing op-
eration, Second Annual Meeting on DNA Based Computers, Princeton,
1996, 67 — 86.

Gh. Paun, Splicing systems with targets are computationally universal,
Inform. Processing Letters, to appear.

Gh. Paun, On the splicing operation, Discrete Applied Math., 70 (1996),
57 - 79.

Gh. Paun, Contextual Grammars. From Natural Languages to Formal
Languages and Back, forthcoming (1997).

Gh. Paun, G. Rozenberg, A. Salomaa, Computing by splicing, Theor.
Computer Sci., to appear.

Gh. Paun, A. Salomaa, DNA computing based on the splicing operation,
Mathematica Japonica, 43, 3 (1996), 607 — 632.

12

[23] Gh. Paun, L. Santean (now Kari), Parallel communicating grammar
systems: the regular case, Ann. Univ. Buc., Matem.-Inform. Series, 38

(1989), 55 — 63.

[24] D. Pixton, Regularity of splicing languages, Discrete Appl. Math., 69
(1996), 101 — 124.

[25] A. Salomaa, Jewels of Formal Language Theory, Computer Science
Press, Rockwille, Maryland, 1981.

[26] W. Smith, A. Schweitzer, DNA computers in vitro and in vivo,
manuscript in circulation, March 1995.

[27] Cl. Zandrou, Distributed test tube systems versus RE, manuscript, 1996.

13

Turku Centre for Computer Science
Lemminkaisenkatu 14

FIN-20520 Turku

Finland

http://www.tucs.abo fi

University of Turku
o Department of Mathematical Sciences

Abo Akademi University
o Department of Computer Science
o Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
o Institute of Information Systems Science

