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Abstract, Lund et al. [1] have proved that PH is contained in 1P. Shamir [2] improved this
technique and proved that PSPACE = 1P. In this note, a slightly simphfied version of Shamir’s
proof IS presented, using degree reductions instead of simple QBFs.
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1. Introduction

It is well known that 1P is contained in PSPACE. So, for equality, it is enough

to show that some PSPACE-complete language has an IP-protocol. We use the

language of true Quantified Boolean Formulas (QBF), that is, formulas Qlxl

‘“” Q,lxnB(x, ... x,,), where B(xl “o. x.) is a Boolean formula (without quanti-

fiers) and QI . . . Q,l ● {V, 3}.

Each Boolean formula B( xl .0” x,, ) corresponds to a polynomial b( x, “”” x.)

where aA~isreplaced bycx. p, 7a byl–aandav~ bya* ~=a+~
— a . /3 ( = 1 — (1 – a)(l – ~ )). Its value coincides with the value of B on

boolean arguments (0 = False, 1 = True).

Let I’(x,. . . ) be a polynomial. Define three polynomials

(AXP)(... )= P(O)... ). P),,...),

(E&)(...) =F’(O,... )* P(1),..),

(Rxl’)(x,...) =Pmod(x’ -x)

(i.e., all x“ with n >1 are replaced by x).

The polynomial RxP has the same variables as P; in AxP and E.xP, variable x

is absent. Note that P and RxP coincide on Boolean arguments.
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Let S(xl ““. x~ ) be a polynomial over some finite field F. Assume that we

know an IP-protocol a allowing P to persuade V that S(ul . . . UL) = v with

probability 1 for any input UI “”” u~, u = F when it is true and with probability

less than ~ when it is false. Let U be a polynomial obtained from S by one of

the operations (Ax, Ex, Rx). Let the degree of S with respect to x be less than

some constant d (known to V). We construct a protocol ~ allowing P to

persuade V that U(CI “”” cl) = e with probability 1 for any input c1 ““” cl, e

when it is true and with probability < c + d/#F when it is false. (Here, #F

denotes the cardinality of F.) This protocol uses a as a procedure called on~

once.

2. A Construction of IP-protocol B

Case A. U(yl ““” y~) =Axs(x, y~ ““” y~).

P wants to persuade V that U(CI . . . cl) = e. P sends V the coefficients of a

polynomial s(x) = S(x, c1 “o” cl). If degree(s) > d or s(0)s(l) # e, V rejects.

Otherwise, V sends P a random element r c F. Now (using protocol a), P

must persuade V that S(r, c1 “” o cl) = s(r).

a

Case E. U(yl .“” yl) = ExS(X, y, “o. yl).

Replace s(0)s(l) by s(0) * s(l).

Case R. U(x, y, “’” y~) = RXS(.X,y~ ““” yl).

P wants to persuade V that ICI(f, c1 “o. c1) = e. P sends V the coefficients of

polynomial s(x) = S(x, c, “.. c,). If de~ee(s) > d or s(0) + (s(1) – s(0))f #

e, ‘V rejects (note that s(0) ; (s(1) – s(O~f is the value of s(x) mod (Xz – ~) at

f). Otherwise, V sends P a random element r = F. Now (using protocol a), P
must persuade V that S(r, c1 “o” co = s(r).

P can fool V either during a (probability less than E) or if different

polynomials s(x) and S(x, c1 “”” cl) coincide at the random point r (probability

not greater than d/#F).

Let + = Qlxl .-. Q~x~l?(xl . . . x,,) be a QBF; QI . . . Q,, G {V, 3}. Consider

a polynomial b(xl “”” x.) corresponding to B(xl “”” x.) and apply (sequen-

tially) operations

RX1, RX2,..., RX,*,

qil x,, 7

Rxl, Rx2,..., Rxr, _,,

qn-lxn-1>

RX,, RX2,

qlxl>

where q, = A or E if Q, = ‘d or 3, respectively. After these operations, we get
a constant equal to O or 1, depending on the truth value of ~. P can persuade

V that this constant is 1 using the reduction steps described. Ultimately, the

equality b(u ~ .”” u,, ) = v must be checked for some UI . ~. u., v; V can do this
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alone because the formula B is known. The probability of error

exceed

(number of operations A, E, R) . (maximal degree)

A. SHEN

does not

(#F)

If the length of QBF was 1, then number of operations is O(lz) and maximal

degree is 0(1) (degree of t does not exceed 1, R-operations reduce it to 1 and

later all degrees are not greater than 2). If #F is about 14, the probability of

error tends to O when 1 + CO.So we can use F = Z/pZ where p is a prime of

logarithmic length (p can be chosen by P or V because primality testing is

trivial for numbers of this size). It is easy to see that Verifier is weak in the

sense of Shamir [2].
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