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ABSTRACT

We present a new protocol and two lower bounds for quan-
tum coin flipping. In our protocol, no dishonest party can
achieve one outcome with probability more than 0.75. Then,
we show that our protocol is optimal for a certain type of
quantum protocols.

For arbitrary quantum protocols, we show that if a pro-
tocol achieves a bias of at most e, it must use at least
Q(loglog 1) rounds of communication. This implies that
the parallel repetition fails for quantum coin flipping. (The
bias of a protocol cannot be arbitrarily decreased by running
several copies of it in parallel.)

1. INTRODUCTION

In many cryptographic protocols, there is a need for ran-
dom bits that are common to both parties. However, if one
of parties is allowed to generate these random bits, this party
may have a chance to influence the outcome of the proto-
col by appropriately picking the random bits. This problem
can be solved by using a cryptographic primitive called coin

flipping.

Definition 1. A coin flipping algorithm with € bias is one
where Alice and Bob communicate and finally decide on a
value ¢ € {0,1} such that

e If both Alice and Bob are honest, then Prob(c = 0) =
Prob(c=1)=1/2.

e If one of them is honest, then, for any strategy of the
dishonest player, Prob(c = 0) < 1/2 + ¢, Prob(c =
1)<1/2+e

*Supported by Microsoft Research Graduate Fellowship
and, in part, by NSF grant CCR-9800024. Part of this work
done while visiting IBM Almaden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC' 01, July 6-8, 2001, Hersonissos, Crete, Greece.

Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

Classically, coin flipping was introduced by Blum[5]. Clas-
sical coin flipping protocols are based on computational as-
sumptions such as one-way functions.

However, classical one-way functions may not be hard
against quantum adversaries. (For example, factoring and
discrete log are not hard in the quantum case[25].) Find-
ing a good candidate for a one-way function secure against
quantum adversaries is an important open problem.

On the other hand, quantum mechanics allows to do some
other cryptographic tasks without any computational as-
sumptions. (The only assumption needed for the security
proof is the validity of quantum mechanics.) The most fa-
mous example is the quantum key distribution[3, 4, 18, 20,
26]. The question is: can we replace the computational
assumptions of the classical case by information-theoretic
security in the quantum case for the coin flipping?

For bit commitment (a related cryptographic primitive),
this is impossible[16, 17, 19]*. The ideas of this impossibility
proof can be used to show that there is no quantum protocol
for perfect quantum coin flipping (quantum coin flipping
with bias 0) [17, 21]. However, this still leaves the possibility
that there might be quantum protocols with an arbitrarily
small bias € > 0.

Several protocols for quantum coin flipping have been pro-
posed. The first was the protocol by Goldenberg et.al.[10]
who used a weaker definition of security’? and gave a pro-
tocol in which any dishonest player can achieve his desired
outcome with probability at most 0.827...

Aharonov et.al.[2] gave a protocol with the stronger secu-
rity guarantee of Definition 1. In their protocol, no dishonest
party can achieve one outcome with probability more than
0.9143... Both of those results use simple protocols and give
provable guarantees about their security.

There has been some effort to construct more complicated
protocols which would achieve arbitrarily small € > 0. At
least two protocols have been proposed: by Mayers et.al.[21]

Tt is possible, however, to have quantum protocols for bit
commitment under quantum complexity assumptions (exis-
tence of quantum 1-way functions). See Dumais et.al.[8] and
Crepeau et.al.[7]

*Namely, [10] assumes that it is known in advance that Alice
wants to bias the coin to 0 and Bob wants to bias it to 1.
Then, it is enough to give guarantees about Pr[c = 0] if Bob
is honest but Alice cheats and Pr[c = 1] if Alice is honest
but Bob cheats. In contrast, our definition 1 requires that
neither of players can bias the coin in any direction by more
than e.



and by Zhang et.al.[28]. None of them had provable security
guarantees but both were conjectured to achieve an arbi-
trarily small ¢ > 0 for an appropriate choice of parameters.
Both of them were eventually broken: the protocol of [21]
was broken by Gottesman and Simon [12] and Leslau [14]
and the protocol of [28] is insecure because of our Theorem
3.

In this paper, we give a simple protocol in which no dis-
honest party can achieve one outcome with probability more
than 0.75.

Then, we show that our protocol is the best in a class of
protocols that includes our protocol, the protocol of [2] and
other similar protocols.

Our third result (Theorem 3) shows that, if one can achieve
an arbitrarily small bias € > 0, then one needs to use more
and more rounds of communication (not just communicate
many qubits in a constant number of rounds). Namely, a
coin flipping algorithm with a bias € needs to have at least
Q(loglog 1) rounds. In particular, this means that the par-
allel repetition fails for quantum coin flipping. (One cannot
decrease the bias arbitrarily by repeating the protocol in
parallel many times.) This also shows that the conjecture
of [28] that their 3-round protocol achieves an arbitrarily
small ¢ > 0 if sufficiently many qubits are transmitted in
each round is wrong.

The role of rounds in quantum communication has been
studied in a different context (quantum communication com-
plexity of pointer jumping) by Klauck et. al. [22]. A popular
survey of quantum cryptography is Gottesman and Lo[11].

2. PRELIMINARIES

2.1 Quantum states

We briefly introduce the notions used in this paper. For
more detailed explanations and examples, see [24].

Pure states: An n-dimensional pure quantum state is a
vector |¢p) € C" of norm 1. Let |0), |1}, ..., |n — 1)
be an orthonormal basis for C". Then, any pure state

can be expressed as [¢) = 22:01 a;|t) for some ao € C,
a1 € C, ..., an—1 € C. Since the norm of |¢) is 1,

|a,-|2 =1.

The simplest special case is n = 2. Then, the basis
for € consists of two vectors |0) and |1) and any pure
state is of form a|0)+b|1), a € C, b € C, |a|>+|b]* = 1.
Such quantum system is called a quantum bit (qubit).
We often look at |1)) as a column vector consisting
of coefficients a;. Then, we use (| to denote the
conjugate transpose of [1). (%| is a row vector con-
sisting of a; (complex conjugates of a;). In this no-
tation, (1|@¢) denotes the inner product of ¢ and ¢.
(If [} = > asli), |¢) = 32bili), then (P|¢) = ajbi.)
|)(4| denotes the outer product of ¥ and ¢ (an n x n
matrix with entries a;b;).

Mixed states: A mixed state is a classical probability dis-
tribution (ps, [1:)), 0 < pi < 1, 37, pi = 1 over pure
states |0;). The quantum system described by a mixed
state is in the pure state |1;) with probability p;.

A mixed state can be also described by its density
matrix p = >, pi|pi)(1i]. It can be shown that any
density matrix has trace 1. (A trace of a matrix is the
sum of its diagonal entries.)

A quantum system can undergo two basic operations:
a unitary evolution and a measurement.

Unitary evolution : A unitary transformation U is a lin-
ear transformation on C* that preserves the Iy norm
(i.e., maps vectors of unit norm to vectors of unit
norm).

If, before applying U, the system was in a pure state
[}, then the state after the transformation is U|y).

If, before U, the system was in a mixed state with a
density matrix p, the state after the transformation is
the mixed state with the density matrix UpU™.

Projective measurements : An observable is a decom-
position of C* into orthogonal subspaces Hi, ..., H:
C"=H1DPH2d...DH;. A measurement of a pure
state 1) with respect to this observable gives the re-
sult i with probability ||P;|e)||> where P;|i) denotes
the projection of |1) to the subspace H;. After the

P; |¢)

measurement, the state of the system becomes AT

A more general class of measurements are POVM mea-
surements (see [24]). In most of this paper, it will be
sufficient to consider projective measurements.

2.2 Bipartite states

Bipartite states: In the analysis of quantum coin flipping
protocols, we often have a quantum state part of which
is held by Alice and the other part by Bob. For ex-
ample, we can have the EPR state (the state of two
qubits J=|0)[0)+ —5[1)|1)), with the first qubit held by
Alice and the second qubit held by Bob. Such states
are called bipartite states.

Tracing out: If Alice measures his part, Bob’s part be-
comes a mixed state. For example, if Alice measures
the first qubit of the EPR state in the basis consisting
of |0) and |1), Bob’s state becomes |0) with probability
1/2 and |1) with probability 1/2. Let p be the density
matrix of the mixed state that Bob gets if Alice mea-
sures her part of a bipartite state |¢)). Then, we say
that p is obtained by tracing out the Alice’s part of
).

There are many different ways how Alice can measure
(trace out) her part. However, they all give the same
density matrix p for Bob’s part.

Purification: Let p be a mixed state. Then, any pure state
|[) of a larger system that gives p if a part of system
is traced out is called a purification of p.

2.3 Distance measures between qguantum states

We use two measures of distance between quantum states
(represented by density matrices): trace distance and fi-
delity. For more information on these (and other) measures
of distance between density matrices, see [9, 24].

Trace distance: Let p = (p1,...,pr) and ¢ = (q1,...,qk)

be two classical probability distributions. Then, the
variational distance between p and q is

k
lp—al=Y_Ipi —ail-
i=1



The variational distance characterizes how well one
can distinguish the distributions p and q.

In the quantum case, the counterpart of a probability
distribution is a mixed state. The counterpart of the
variational distance is the trace distance. It is defined
as follows.

The trace norm of a matrix A is the trace of |A| where
|A| = VATA is the positive square root of ATA. We
denote the trace norm of A by ||A||;. The following
lemma relates the trace norm of p1 — p2 (which we
also call trace distance between p: and p2) with the
variational distance between distributions obtained by
measuring p; and pa.

LEMMA 1. [1] Let pf,vlf, pf,\;[ be the probability dis-
tributions generated by applying a measurement M to
mized states p1 and p2. Then, for any (projective or
POVM) measurement M, |p5 —ppt| < ||p1 — p2||: and
there exists a measurement M that achieves the vari-
ational distance ||p1 — p2||¢-

We can always choose the measurement M that achieves
the variational distance ||p1 — p2]|+ so that M is a pro-
jective measurement and it has just two outcomes: 0
and 1.

Fidelity: Let |¢)1) and |¢2) be two bipartite states. Let

p1 and p2 be the mixed states obtained from |¢1) and
[2) by tracing out (measuring) Alice’s part.

LEMMA 2. [17, 19] If p1 = p2, then Alice can trans-
form |11) into [1h2) by a transformation on her part of
the state.

For example, consider the bipartite states

1
1) = E(IOO) +101)),

th2) = 5 (100) + [01) + [10) — 1)),

with the first qubit held by Alice and the second qubit
held by Bob. If Alice measures her qubit of [¢1), Bob
is left with |0) with a probability 1/2 and |1) with a
probability 1/2. If Alice measures her qubit of |¢)2),
Bob is left with —(|0) + |1)) with a probability 1/2
and —(|0) —[1)) with a probability 1/2. Both of those
states have the same density matrix

( 162 192 )

By lemma 2, this means that Alice can transform [¢)1)
into |t2). Indeed, she do that by applying the Hadamard
transform H to her qubit.

A generalization of lemma 2 is: if the two density ma-
trices p1 and p» are close, then Alice can transform
[401) into a state |11} that is close to |12).

In this case, the distance between the two density ma-
trices is measured by the fidelity F'(p1, p2). The fidelity
is defined as F(p1, p2) = max|y,), s [(¥1]1h2)|?, over
all choices of [¢1) and |2) that give density matrices
p1 and p2 when a part of system is traced out.

LEMMA 3. [18] Let p1, p2 be two mized states with
support in a Hilbert space H, K any Hilbert space of
dimension at least dim(H), and |¢p;) any purifications
of pi in H ® K. Then, there is a local unitary trans-
formation U on K that maps |¢2) to |¢ph) = I ® U|p2)
such that

|(¢1|¢’2)|2 = F(pl,p2).
LEMmMA 4. [27]

Fionon = [ ()]

Relation between trace distance and fidelity: The trace
distance and the fidelity are closely related. If p; and
p2 are hard to distinguish for Bob, then Alice can
transform |4)1) into a state close to |2 ) and vica versa.
Quantitatively, this relation is given by

LEMMA 5. [9] For any two mized states p1 and pz,
1
1=V F(p1,p2) < 5llp1 = p2lle < V1= F(py, p2)-

In particular, F'(p1, p2) = 0 if and only if ||p1 — p2||: =
2.

3. APROTOCOL WITH BIAS 0.25

Protocol: Define

55100+ J511) ifb=0,2=0

6o} = 510y = 5511 ifb=0,z=1
’ 510+ Z512) ifb=12=0
710 = 5512) ifb=12z=1

1. Alice picks a uniformly random b € {0,1} and = €
{0,1} and sends |¢s,) to Bob.

2. Bob picks a uniformly random &' € {0,1}, sends b’ to
Alice.

3. Alice sends b and z to Bob, he checks if the state that
he received from Alice in the 1°* step is |@s,») (by mea-
suring it in with respect to in a basis consisting of
|#6,) and two vectors orthogonal to it)3. If the out-
come of the measurement is not |@p ), he has caught
Alice cheating and he stops the protocol.

4. Otherwise, the result of the coin flip is b @ b’.

THEOREM 1. The bias of this protocol is 0.25.

PRrROOF. We bound the probability of dishonest Alice (or
dishonest Bob) achieving b @ &' = 0. The maximum proba-
bility of achieving b®b’ = 1 is the same because the protocol
is symmetric.

Case 1: Alice is honest, Bob cheats. If b = 0, Alice sends a
mixed state that is equal to % (]0)+|1)) with probability 1/2
and —5(|0) — [1)) with probability 1/2. If b = 1, she sends
a mixed state that is equal to %(|0) + |2)) with probability

3For example, if b = x = 0, then Bob could measure in the
basis [goo) = 510) + (1), 5[0) — 25]1), [2).



1/2 and —5(|0) — [2)) with probability 1/2. The density
matrices of these two mixed states are

100 100
po=|0 5 0 |pr=| 0 0 0
0 00 0 0 3

and ||po — p1||t = 1. By Theorem 3 of [2], the probability
that Bob achieves b= b is at most 3 + M =3

Case 2: Bob honest, Alice cheats.

Let p be the density matrix of the state sent by Alice in
the 15 step.

LEMMA 6. There is a strategy for dishonest Alice where
the state sent by Alice in the 1°* round has the density matriz
of the form

1-61—-6 0 0
p = 0 a0 (1)
0 0 &2

for some &1 and 82 and Alice achieves b=1b with the same
probability.

PRrooOF. Let Up = I,

1 0 0 1 0 O
U = 0 -1 0 U, = 01 0
0 0 1 0 0 -1

0 o0

St

Assume that Alice, before sending the state 1)) to Bob in
the 1°¢ round, applies U; to it and, then, in the 3" round, re-
places each description of |¢s,.) by a description of U;|dp,q).
Then, Alice achieves the outcomes 0 and 1 and gets caught
with the same probabilities as before because

(a:) For all ¢ € {01 17273}7 b € {07 1}7 z € {0’ 1}7 Uz|¢b,m) is
either |¢p,0) or |¢s,1), and

(b) For any |9}, the overlap between U;|¢) and U;|gp,) is
the same as the overlap between |1) and |¢p. ).

Probabilities of obtaining 0, 1 and getting caught also stay
the same if Alice picks a uniformly random 4 € {0,1,2,3}
and then applies U; to both the state sent in the 15° round
and the description sent in the 3*¢ round. In this case, the
density matrix of the state sent by Alice in the 1°* round

is p =1 Z(UopU(;r + Ui pU{ + UspU} + UspU;r). For every
ik € {1,2,3}, 7 # k, (UipU;r)jk is equal to pjr for two
i € {0,1,2,3} and to —p;i for the two other i. Therefore,

P = 0 for all j # k, i.e. p' is of the form (1). O

LEMMA 7. The probability that Alice convinces Bob that

b =0 is at most F(p', po).

PROOF. Let

[9) = > aili) )

be the purification of p' chosen by Alice if she want to con-
vince Bob that b = 0. For every |¢);), Alice sends to Bob a

description of a state |+;) which is one of |¢s.), b € {0,1},
z € {0,1}.

Then, the probability that Bob accepts |1);) as this state
is |(3i]0})]?. The total probability of Bob accepting is

3 lasl ey
which is the same as |(1[¢')|? for
) = 3 el

Alice is trying to convince Bob that b = 0. Therefore,
we can assume that she always sends to Bob a description
of |do,0) or |do,1). (Replacing a description of |¢1,.) by a
description of |¢o,,) can only increase the probability of Bob
accepting b = 0, although it may simultaneously increase the
probability of Alice caught cheating.)

Also, the probability of Alice sending a description of
|o,0) is the same as the probability of Alice sending a de-
scription of |¢o,1) because, for every z € {0,1}, two of
Uol¢o,2), Uildo,z), Uz|go,e), Us|do,z) are equal to |¢o,0) and
two are equal to |¢o,1).

Therefore, Bob’s side of |¢') is a uniform mixture of |¢o,0)
and |@o,1), i-e. its density matrix is po. This means that |+')
is a purification of pg. Therefore, |(4|¢')|? < F(p,po). O

LeEMMA 8. The probability that Alice achieves b &b =
0 (or, equivalently, b ®b = 1) is at most 2(F(p',po) +
F(p', p1))-

PROOF. With probability 1/2, Bob’s bit is ¥’ = 0. Then,
to achieve b @ b = 0, Alice needs to convince him that
b = 0. By Lemma 7, she succeeds with probability at most
F(p', po).

With probability 1/2, Bob’s bit is &’ = 1. Then, Alice
needs to convince Bob that b = 1 and she can do that with
probability F(p’, p1). The overall probability that Alice suc-
ceeds is 4 (F(s',po) + F(p/,p1)). O

By Lemma 4,

F(p', po) = [Tr(\/ /¢ po/P))?

1 1 ?
=(-—%=V1—-061—dh+-—F=Vé]| .
(Fgvi=a—a+2-va)

Similarly, F(p', p1) = (%\/1 —01 — 02 + %\/E)z There-
fore,

S (F W p0) + F(p', 1))
1 1 s 1 1 2
= (E\/l — 61 — 52+%\/g) +(E\/l — 01 —52+E\/g)
= % ((1—61—62)+62—1+%+\/1—61 —éz(x/ziﬂ/@)).

(2)

Let § = @. The convexity of the square root implies
that /31 4+ v/d2 < 2¢/3 and (2) is at most

%(1—5+2\/W)-

Taking the derivative of this expression shows that it is
maximized by § = §. Then, it is equal to 3(1—§+3) = 3.



4. LOWER BOUNDS FOR 3 ROUNDS

We show a lower bound for a class of 3 round protocols
which includes the protocol of section 3 and the protocol
of [2]. This class is defined by fixing the structure of the
protocol and varying the choice of states |¢p,.).

Let Xo and X; be two sets and 7o and m; be probability
distributions over X, and X, respectively. Assume that,
for every b € {0,1} and = € X, we have a state |@p,z).

1. Alice picks a uniformly random b € {0,1}. Then, she
picks z € X according to the distribution 7, and sends
|#5,2) to Bob.

2. Bob picks a random ¥’ € {0, 1}, sends ' to Alice.

3. Alice sends b and = to Bob. Bob checks if the state
that he received in the 1°* step is |@s,)-

4. The result of the coin flipis b® b'.

THEOREM 2. Any protocol of this type has a bias at least
0.25.

PRrROOF. Let po and p1 be the density matrices sent by an
honest Alice if b =0 and b = 1, respectively. (These density
matrices are mixtures of |@y ) over z € X;.)

LEMMA 9. Bob can achieve 0 with probability %+w.

PrOOF. By Lemma 1, there is a measurement M that,
applied to po and pi, produces two probability distribu-
tions with the variational distance between them equal to
[lpo — p1ll¢ and it can be chosen so that there are just two
outcomes: 0 and 1.

Let po and 1 — po be the probabilities of outcomes 0 and
1 when the measurement M is applied to po. For the varia-
tional distance to be ||po—p1]|¢, the probabilities of outcomes
0 and 1 when the measurement M is applied to p; have to
be po — ||Po—2/J1IIt and 1 — po + |\Po—291||t ]

Bob applies the measurement M to the state that he re-
ceives from Alice and sends b = 0 if the measurement gives
0 and b = 1 if the measurement gives 1. Since an honest
Alice chooses a = 0 with probability 1/2 and a = 1 with
probability 1/2, Bob achieves a = b (and a ® b = 0) with
probability

1 1 llpo — p1ll¢ L, [lpo—pallt
Spo4 = (1—po4 Mo prlle) _ 2 4 IPo— prlle,
2p0+2 ( po + 2 2+ 1

O

LEMMA 10. Alice can achieve 0 with probability

1, v/F(po,p1)
RN S
2 2
PROOF. First, we consider an honest Alice which does the
protocol on a quantum level. That means that she flips a
classical coin to determine a € {0,1} and then prepares the
superposition

[$a) = > Vma(@)li)lda.i)

1€EXq

and sends the second part of the superposition to Bob. After
receiving b from Bob, she measures ¢ and sends a and 7 to
Bob.

The pure states |¢o) and |i1) are purifications of the
density matrices po and p;. By Lemma 3, there is a uni-
tary transformation U on the Alice’s part of 1 such that
[(solU (1)) = F(po, p1)-

Let o be such that F(po, p1) = cos® . Then, (o|U(h1)) =
cos a. This means that

{ |tho) = cos 5 |po) +sin F|p1)
Ulhr) = cos Slpo) —sin Sp1)

for some states |po), |¢1)-

A dishonest Alice prepares |@o) and sends the 2°¢ part to
Bob. If she receives b’ = 0 from Bob, she acts as an honest
quantum Alice who has prepared [to) and sent the 2°¢ part
to Bob. (That is, she measures her part |i) and sends 0
and 7 to Bob.) Bob accepts b = 0 with probability at least
(40| 0)|* = cos® §.

If she receives b’ = 1, Alice performs U~' on her part
of |po) and continues as an honest quantum Alice who has
prepared [¢)1) (measures |¢) and sends to 1 and ¢ to Bob).
Bob accepts b = 1 with probability

KU~ (@o)lpn)|* = [{olU(¥1))|* = cos® %

In both cases, the probability of Bob accepting b ® b’ = 0
is cos? 2. Therefore, the overall probability of b@® b’ = 0 is
2 a

cos” § as well and we have

sa l4cosa 14 +/F(po,p1)

COos — = = .

2 2 2

O

If F(po,p1) > i, then, by Lemma 10, Alice can achieve a
bias of 7"”;0’“) > 1

If F(po,p1) < %, then, by Lemma 9, Bob can achieve a
bias of 1||po — p1||: and, by Lemma 5,

1 1 1
gllpospille 2 S (L =/ Flpo, p1)) 2 7.

5. THE LOWER BOUND ON THE NUM-
BER OF ROUNDS

THEOREM 3. Let e < 1/4. Any protocol for quantum coin
flipping that achieves a bias € must use Q(loglog %) rounds.

Proof sketch: Assume we have a protocol for quantum
coin flipping with k rounds and a bias e.

The protocol starts with a fixed starting state |1)°). Then
(if both players are honest), Alice applies a unitary transfor-
mation Ui, sends some qubits to Bob, he applies Uz, sends
some qubits to Alice and so on. After Uy, both Alice and
Bob perform measurements on their parts. If both of them
have followed the protocol, the two measurements give the
same result and this result is 0 with probability 1/2 and 1
with probability 1/2.

For our analysis, we assume that this final measurement
only measures the 0/1 result bit and does not disturb other
qubits. We also assume that all intermediate measurements
are delayed till the end of the protocol. This is possible
because of the “principle of safe storage” of [6].



Then, the joint state of Alice and Bob after i steps is a
pure state |)").

We represent |1h*) = |1b§) + [1), where [§) is the state
which leads to the outcome 0 if the rest of protocol is applied
and |¢) is the state which leads to the outcome 1 if the
rest of protocol is applied. (See the detailed proof in the
appendix for a precise definition of |1/§) and |1¢).) Notice
that ||46|| = [|4i]| = 3 because the coin flip gives each of
two outcomes with probability 1/2.

Let p% ; (ps ;) be the density matrix of Alice’s (Bob’s)
part of the (normalized) bipartite state v/2[¢). Let Fj
(F%) be the fidelity between p% ¢ and p'y 1 (plz,0 and plz ).

Our proof is based on analyzing how F and F§ change
during the protocol. It consists of following 4 steps:

1. We show that F§ and F§ must be large (Lemma 12).

The main idea here is as follows. If F§ is small, then
the states |10} and |#)) can be well distinguished by
looking just at Alice’s side. Then, Alice can success-
fully cheat by preparing the wrong starting state (some
state close to [13) instead of |/°)). Running the hon-
est protocol on such a state gives the result 0 with a
high probability. If Fg is small, Bob can cheat in a
similar way.

2. F% = FE =0 (Lemma 11).

This follows from the fact that, at the end of protocol
(after k rounds) both parties know the outcome of the
protocol.

3. If, for some i, one of F and F} is significantly less
than the other, then Alice (or Bob) can successfully
cheat (Lemma 13 and Corollary 2).

If Fi is significantly smaller than F%, then Alice can
distinguish |15) and |+?) much better than Bob. Then,
she can cheat by applying the best measurement for
distinguishing |1%) and |4%). If she gets the 0-state, she
just continues as in the honest protocol. If she gets the
1-state, she applies a transformation that maps |¢¢)
to a state overlapping with |15} and then continues
as in the honest protocol. This is possible because
F% >> F¥ and, therefore, Bob cannot distinguish [¢§)
and [¢%) so well.

4. If F$ and F3 are large, F% = F% = 0 and there are
few (less than c - loglog 1) rounds, then, for some i,
F% and Fj must be significantly different (Lemma 14).
Together with the first 3 parts, this implies the theo-
rem.

A detailed proof is given in the appendix.

6. CONCLUSION

We have constructed a protocol for quantum coin flipping
with bias 0.25 and shown that it is optimal for a restricted
class of protocols. We also gave a general lower bound on
the number of rounds needed to achieve a bias e.

The main open question is: can one construct a protocol
with an arbitrarily small bias ¢ > 0?7 Our Theorem 3 im-
plies that, if this is possible, the number of rounds should
increase when e decreases. Therefore, we need to learn how
to analyze the security protocols with more than 3 rounds.

(So far, all protocols with provable security guarantees have
consisted of at most 3 rounds.)

Analysis of 3-round protocol is not complete yet, either.
We know that our protocol is optimal for the class of pro-
tocols of section 4. However, we do not know whether it is
optimal among all 3-round protocols. The proof of Theo-
rem 3 can be used to give a lower bound on the bias of any
3-round protocol but this lower bound is just 0.001...

Another restricted class of protocols that might be easy
to analyze are protocols where the 1% message from Al-
ice to Bob is quantum but all the subsequent messages are
classical. In other words, in the first step Alice creates an
entangled state with Bob and then they both do operations
on their qubits and communicate classical information. This
somewhat resembles the well-known LOCC (local operations
and classical communication) paradigm in the study of en-
tanglement [23, 24].

It might be possible to give an exact analysis of what can
be achieved by protocols of this type. A first step could be
analyzing 3-round protocols where the 1°* message is quan-
tum and the two other messages are classical.

7. ACKNOWLEDGMENTS

Thanks to Dorit Aharonov, Daniel Gottesman, Boaz Leslau,
Hoi-Kwong Lo, Moni Naor, Louis Salvail, Yaoyun Shi, Am-
non Ta-Shma, Umesh Vazirani and Xinlan Zhou for useful
comments, discussions and information about related work.

8. REFERENCES

[1] D. Aharonov, A. Kitaev, N. Nisan. Quantum circuits
with mixed states. Proceedings of STOC’97, pp. 20-30.

[2] D. Aharonov, A. Ta-Shma, U. Vazirani, A. Yao.
Quantum bit escrow. Proceedings of STOC’00, pp.
705-714.

[3] C. Bennett, G. Brassard. Quantum cryptography:
public-key distribution and coin tossing. Proceedings
of IEEE International Conference on Computers,
Systems and Signal Processing, pp. 175-179,
Bangalore, India, 1984.

[4] E. Biham, M. Boyer, P. Boykin, T. Mor, V.
Roychowdhury. A proof of the security of quantum key
distribution. Proceedings of STOC’00, pp. 715-724.

[6] M. Blum. Coin flipping by telephone: A protocol for
solving impossible problems. Advances in Cryptology:
Report on CRYPTO’81, pp. 11-15.

[6] E. Bernstein, U. Vazirani. Quantum complexity
theory. SIAM Journal on Computing, 26:1411-1473,
1997.

[7] C. Crepeau, F. Legare, L. Salvail. How to convert the
flavour of a quantum bit commitment. Proceedings of
EUROCRYPT’01, Lecture Notes in Computer
Science, 2045:60-77, Springer, Berlin, 2001.

[8] P. Dumais, D. Mayers, L. Salvail. Perfectly concealing
quantum bit commitment from any quantum one-way
permutation. Advances in Cryptology: EUROCRYPT
2000: Proceedings, Lecture Notes in Computer
Science, 1807:300-315, Springer, Berlin, 2000.

[9] C. Fuchs, J. van der Graaf. Cryptographic
distinguishability measures for quantum mechanical
states. IEEE Transactions on Information Theory,
45:1216-1227, 1999.



[10] L. Goldenberg, L. Vaidman, S. Wiesner. Quantum
gambling. Physical Review Letters, 82:3356-3359, 1999.

[11] D. Gottesman and H.-K. Lo. From quantum cheating
to quantum security. Physics Today, 53, no. 11, pp.
22-27.

[12] D. Gottesman, D. Simon. Personal communication,
January 2001.

[13] R. Jozsa. Fidelity for mixed quantum states. Journal
of Modern Optics, 41:2315-2323, 1994.

[14] B. Leslau. Attacks on symmetric quantum coin-tossing
protocols, quant-ph/0104075.

[15] H. Lo. Insecurity of quantum secure computations.
Physical Review A, 56:1154-1162, 1997.

[16] H. Lo, H. Chau. Is quantum bit commitment really
possible? Physical Review Letters, 78:3410-3413, 1997.

[17] H. Lo, H. Chau. Why quantum bit commitment and
ideal quantum coin tossing are impossible. Physica D,
120:177-187, 1998.

[18] H. Lo, H. Chau. Unconditional security of quantum
key distribution over arbitrarily long distances.
Science, 283:2050-2056, 1999.

[19] D. Mayers. Unconditionally secure quantum bit
commitment is impossible. Physical Review Letters,
78:3414-3417, 1997.

[20] D. Mayers. Unconditional security in quantum
cryptography. Journal of ACM, to appear. Also*
quant-ph /9802025.

[21] D. Mayers, L. Salvail, Y. Chiba-Kohno.
Unconditionally secure quantum coin-tossing.
quant-ph /9904078.

[22] H. Klauck, A. Nayak, A. Ta-Shma, D. Zuckerman.
Interaction in quantum communication complexity
and the complexity of set disjointness. Proceedings of
STOC’01, to appear.

[23] M. Nielsen. Conditions for a class of entanglement
transformations. Physical Review Letters, 83:436-439,
1999.

[24] M. Nielsen, I. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press,
2000.

[25] P. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. STAM J. Computing, 26:1484-1509, 1997.
Also FOCS’94.

[26] P. Shor, J. Preskill. Simple proof of security of the
BB84 quantum key distribution protocol. Physical
Review Letters, 85:441-444, 2000.

[27] A. Uhlmann. The ’transition probability’ in the state
space of *-algebra. Reports on Mathematical Physics,
9:273-279, 1976.

[28] Y. Zhang, C. Li, G. Guo. Unconditionally secure
quantum coin tossing via entanglement swapping,
quant-ph/0012139.

APPENDIX
A. PROOF OF THEOREM 3

Assume we have a protocol for quantum coin flipping with
k rounds and the bias e.

4quant-ph preprints are available at
http://www.arxiv.org/archive/quant-ph

The protocol starts with some fixed starting state |4°).
Then (if both players are honest), Alice applies a unitary
transformation Ui, sends some qubits to Bob, he applies
Us, sends some qubits to Alice and so on. After Uk, both
Alice and Bob perform measurements on their parts. If both
of them have followed the protocol, the two measurements
give the same result and this result is 0 with probability 1/2
and 1 with probability 1/2.

For the purpose of our analysis, we assume that this final
measurement only measures the 0/1 result bit and does not
disturb other qubits. We also assume that all intermediate
measurements are delayed till the end of the protocol. This
is possible because of the “principle of safe storage” of [6].

Then, the joint state of Alice and Bob after i steps is a
pure state [t)")

Let |¢f) and [¢f) be the (unnormalized) states after the
final measurement if the measurement gives 0 (1). Then,
[08) L [p) and %) = [o85) + [6F). Also, &2 = |2 =
% (since a protocol must give 0 with probability 1/2 and 1
with probability 1/2).

We define |¢6) = (Ui+1U¢+2...Uk)’1|¢§) and |¢i) =
(Ui1Uis2 ... U) " H|9f). Then, [¢*) = |35) + [¢f) and the
linearity of Uiy1 ... Uy imply [¢*) = |15) + [¢1).

Let p4 ; (ps,;) be the density matrix of Alice’s (Bob’s)
part of the (normalized) bipartite state v/2[t)}). Let Fj
(F}%) be the fidelity between pfg,o and pfA,l (p}é,o and p}é,l).

Our proof is based on analyzing how F% and Fj§ change
during the protocol. We show that they must be large at
the beginning, 0 at the end and, if they decrease too fast,
this creates an opportunity for cheating. This implies the
lower bound on the number of rounds.

LemMA 11. F§ = FE = 0.

PROOF. At the end, both Alice and Bob know the out-
come of the protocol with certainty. That means that there
is a measurement of Alice’s qubits that perfectly distin-
guishes |1§) and [¢F) (i.e., this measurement gives 0 with
probability 1 on |¢&) and 1 with probability |¢})). By
Lemma 1, [|p§ o — plylle = 2. By Lemma 5, F(pls 0, 0 1)
must be 0.

Similarly, FE =0. O

Second, we show that, if F§ or F3 is too small, one of
sides can cheat.

LEMMA 12. Alice can achieve one of outcomes 0 and 1
with probability at least 1 — \/F}.

PROOF. Since there is no prior entanglement, the starting
superposition |1/°) is a tensor product |14 )®|1s), with Alice
having |14) and Bob having |¢¥B).

Consider the best measurement M (for Alice) that dis-
tinguishes p% o and p% ;. Let [¢8) = |tboo) + |to1), where
[4h00) is the remaining state if the measurement M on [13)
gives the outcome 0 and |to1) is the remaining state if M
gives the outcome 1. Let [¢?) = |110) + |t11), with |¢10)
and |¢11) defined similarly.

If Alice applies M to [1°) = |43 + |1?), she either gets
the outcome 0 and the remaining state |15} = |tboo) + |110)
or 1 and the remaining state |11} = |[to1) + |th11). |[4°) is a
product state and the measurement M is applied to Alice’s



side only. Therefore, |15} and |¢)]) (the remaining states
when M gives 0 and 1) are product states as well.

Since [$°) = 1) + [¥4), cither [l > 1 or [[¥4])” > 1.
For simplicity, we assume that [|1g]|* > 1 and Alice is trying
to achieve the outcome 0. (The outcome 1 can be achieved
with only slightly smaller probability.)

Let |14 ) ® [+'5) be the normalized state |||¢ - To bias the

coin towards 0, Alice just runs the honest protocol with her
starting state being |¢);) instead of |14).

Let |[9bo1])® + ||910]|> < e. We show that this implies that
[¢4) ® [¥B) is close to the normalized state v/2|13) (which
gives the outcome 0 with probability 1). We have

|0} _ Ithoo) + |¥h10) _ [hoo) + |¢01) [¥10) — [bo1)
ol — [l ]l lll llgoll

[00) + |101) = |13) leads to the outcome 0 with certainty.
Therefore, the probability of a different outcome (1 or Alice
caught cheating) is at most

10 — Youll® _ lIbnoll” + lIgonll” _ e
ol — lloll? =17
Therefore, the described strategy for dishonest Alice gives 0
with probability at least 1 — 2e.
Next, we bound ||4o1]|? + ||1b10]|*-
Let 1 — po and po be the probabilities of outcomes 0 and
1 when measuring v/2|1{). Let p1 and 1 — p; be the proba-
bilities of 0 and 1 when measuring v/2|#}). Then, the vari-
ational distance between these two probability distributions
is 2(1 —po — p1). Since we are considering the best measure-
ment for distinguishing p% o and p ;, 2(1—po —p1) is equal
to ||P?4,0 -

1—y/F} = 1=\/F(p% 0, P%,1) < lIpa,0—Pa1lle = (1—po—p1)

and this is equivalent to po +p1 < \/IT}; .

Notice that po = 2||1bo1||> because p% ¢ is the density ma-
trix of Alice’s side of v/2|1)} o) and [tpo1) is the remain-
ing state if the measurement of |1/)%,0) gives 1. Similarly,
p1 = 2|[¢h10]|>. Therefore, we have |91 [|* +[[¢10]|* < 5+/F3
and Alice can bias the coin to 0 with probability at least

1-/F3. O

Hence, if the bias of a protocol is ¢, then, by Deﬁnition 1,
we must have 1 — \/F_g < 1 +e. This implies /F§ > 1 —¢
and F3 > (3 —e€)®. Since € < 1/4, we must have Fj > 116

Third, we show that, if after any round, one of F and F}
is much larger than the other, this also creates a possibility
for cheating.

= 2e.

P%.1ll¢- By Lemma 5, this implies

LEMMA 13. Leti € {1,...,k—1}. Then, there is a strat-
egy for dishonest Alice which achieves the result 0 with prob-
ability at least

(o) o (G i) o

PRrROOF. To simplify the notation, we denote F, and F§
by simply F4 and Fp (omitting the index ¢ which is the
same throughout the proof).

We first prove the F4 = 0 case. This case was previously
considered by Mayers et.al.[21]. They showed that, if F4 =0

and Fp > 0, then Alice can successfully cheat. Below, we
show how to formalize their argument so that it shows the
probability that Alice can achieve.

Fa =0 case. Then, (3) is just 1 + FTB.

By Lemma 5, F(pl40,p4,1) = Fa = 0 implies [p} o —
paille = 2. This means that there is a measurement for
Alice that perfectly distinguishes p’y o and p% ;. Alice can
perform this measurement without disturbing the rest of
the state, i.e. so that the joint state of Alice and Bob after
the measurement is [t§) with probability 1/2 and |¢%) with
probability 1/2. In the first case, she just continues as in the
honest protocol. This gives the answer 0 with probability
1/2.

If she gets |+8), by Lemma 3, there is a unitary transfor-
mation U that can be performed by Alice such that

1 2
F(pl o, pin ) Ihl]? = TB0 ) _ T
(4)
Alice performs U and then continues as in the honest proto-
col. This gives the answer 0 with probability at least F'z/2.
Together, the probability of answer 0 is at least (1+Fg).

[(WolU@OH* =

F4 > 0 case. By Lemma 5, there is a measurement M for
Alice that, applied to piA,O and pf4,1, produces two probabil-
ity distributions with the variational distance between them
at least 2(1 — /F4). Without the loss of generality, we can
assume that this is a measurement with two outcomes 0 and
1 and the probability of 0 is higher for p”j'4,0 and the proba-
bility of 1 is higher for p¥ ;.

The strategy for cheating Alice is the same as in the Fq =
0 case. She applies the measurement M and, then, if she
gets 0, continues as in the honest protocol. If she gets 1, she
applies the transformation U and then continues as in the
honest protocol.

Next, we show that this strategy achieves the result 0 with
the probability given by the formula (3).

Let |46) and |¢}) denote the (unnormalized) remaining
states when the outcome of the measurement M is 0 and 1,
respectively.

Also, let |qp) (for a,b € {0,1}) denote the (unnormal-
ized) remaining states when |1%) is measured and the out-
come of the measurement is b. Then, |15} = |too) + [¥10)
and [¢1) = [Yo1) + [t11).

On the other hand, |y5) =
|111). Therefore,

llvo — woll = 110 — tor |l < llroll + Ilbor |

< V2(Ilg10l? + [[por 1) (5)
Similarly to the proof of Lemma 12, |[t410]® + [[tbo1]]® <
1V/F4. Therefore, (5) is at most v/Fa. We also have |[; —
Pi|| < V/Fa with the same proof.

Let ) be the set of bipartite states such that apply-
ing the rest of the protocol (UxUk—1 ...U;+1) and the final
measurement at the end of the protocol gives the outcome 0
with probability 1. Then, |48} € H§. Also, the norm of the
projection of U(|1)) on H} is at least \/Fr/2 (by (4)).

Consider the norms of the projections of [1)5) and |¢1) on
Hi. They differ from the norms of |1[10) and [¢}) by at most

lph — i)l < VFa and ||[9i — ¥i|| < V/Fa. Therefore the
projection of [¢4) on H} is of norm at least T — v/F4 and

|1boo)+[1bo1) and [1h1) = [¢10)+

the projection of UJy}) is of norm at least 7 — VFa.



This means that the probability of outcome 0 is at least

() + ()
([l

For the purposes of this paper, a weaker form of lemma
13 is sufficient.

COROLLARY 1. Let i € {1,...,k —1}. Then, there is a
strategy for dishonest Alice which achieves the result 0 with
probability at least % + L2 —2/2Fs.

PROOF. We have

(J5- 7

7
)

=(§—ﬁm+m
z(g—ﬁm)+(%_ﬁm)

(- m)

+(%_ﬁ@m+m)

% % 2V2v/Fa.
O

COROLLARY 2. Assume that the bias of a protocol is at
most €. Then, after every round, Fg < 2¢ + 6v/Fa and
Fa<2e+6vFs.

PROOF. By Lemma 13, Alice can achieve Pr[0] = } +
FQB —2v/2{/F4. Because the bias of the protocol is at most e,
2v2{/Fa < eand Fp < 2e+4v2/F4 <

F
we must have =2 —

2¢ + 6+/Fa.
Fs < 2¢+ 6+/Fp follows similarly. [

Next, we use Corollary 2 to show that the fidelities Fi
and F3 cannot decrease too fast.
LEMMA 14. Assume that a k-round protocol has the bias
. k—i—1
at most €. Then, for any i < k, Fj < 14¢'/*
Fi < 144770

and

ProoF. By induction on k — 1.

Base case. 1 =k — 1.

First, remember that F§ = FE = 0. Let X € {4, B} be
the person who sends the message in the k*® round and Y
be the person who receives the message. Sending away a
part of the state can only increase the fidelity. Therefore,
FEL<Fi=0,ie FET'=0.

By Corollary 2, Fy™' < 2e + 64/ Fi ' = 2e < l4e.

Inductive case.

We assume that the lemma is true for ¢ and show that it
is also true for ¢ — 1. Similarly to the previous case, let X
be the person who sends the message in the *® round and
Y be the other person. Then,
gh—i—1

Fir' < Fi < 14€"/
By Corollary 2,

F)'i]—l < 2e+6 4 14¢l/4k—i—1 < (2+6 4/—14)61/4k—i < 1461/4k_i_

O

In particular, Lemma 14 implies that F{ < 14e /4571 e
also have F§ > > 15 (Lemma 12 and the first paragraph after
its proof). Therefore, 1464~ 2 .. Taking log of both
sides twice gives k = Q(loglog 2).



