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ABSTRACT. The purpose of this paper is to outline the theory of computational complexity 
which has emerged as a comprehensive theory during the last decade. This theory is concerned 
with the quantitative aspects of computations and its central theme is the measuring of the 
difficulty of computing functions. The paper concentrates on the study of computational com- 
plexity measures defined for all computable functions and makes no attempt to survey the 
whole field exhaustively nor to present the material in historical order. Rather it presents the 
basic concepts, results, and techniques of computational complexity from a new point of view 
from which the ideas are more easily understood and fit together as a coherent whole. 
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1. Introduction 

I t  is clear that  a viable theory of computation must deal realistically with the 
quantitative aspects of computing and must develop a general theory which studies 
the properties of possible measures of the difficulty of computing functions. Such 
a theory must go beyond the classification of functions as computable and non- 
computable, or elementary and primitive reeursive, etc. I t  must concern itself with 
computational complexity measures which are defined for all possible computations 
and which assign a complexity to each computation which terminates. Furthermore, 
this theory must eventually reflect some aspects of real computing to justify its 
existence by contributing to the general development of computer science. During 
the last decade, considerable progress has been made in the development of such a 
theory dealing with the complexity of computations. I t  is our conviction that by 
now this theory is an essential part of the theory of computation, and that in the 
future it will be an important  theory which will permeate much of the theoretical 
work in computer science. 

Our purpose in this paper is to outline the recently developed theory of computa- 
tional complexity by presenting its central concepts, results, and techniques. The 
paper is primarily concerned with the study of computational complexity measures 
defined for all computable partial functions and no at tempt is made to survey the 
whole field exhaustively nor to present the material in historical order. Rather, we 
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concentrate on exhibiting those results and techniques which we feel are important  
and present them from a point of view from which they are most easily understood. 
In a way, this paper contains what we believe every computer scientist (or at least 
those working in the theory of computation) should know about computational 
complexity. On the other hand, he who wishes to do further research in this area may 
have to do considerably more reading. In particular, he should study the results 
about specific complexity measures and relations between different measures which 
have motivated much of the general approach and which remain a source for ideas 
and counterexamples. 

It  should be emphasized that  this overview does not include some very interesting 
recent work which deals with establishing lower and upper bounds on the difficulty 
of computing specific functions. This is an important  area of research in computa- 
tional complexity and may be of considerable practical importance ; at the same time 
it is our conviction that  this area is developing very rapidly and that  it is premature 
to try to survey it now. 

In the first part  of the paper the definition of computational complexity measures 
is motivated and several examples are given. After that,  some basic properties are 
derived which hold for all complexity measures. I t  is shown, for example, that  in 
every complexity measure there exist arbitrarily complex zero-one functions and 
that there is no recursive relation between the size of a function and its complexity. 
On the other hand, it is shown that  any two complexity measures bound each other 
recursively. In Section 3 we give a new proof of the rather surprising result which 
asserts that  in any measure there exist functions whose computation can be ar- 
bitrarily sped up by choosing more and more efficient algorithms. This is later 
shown not to be true for every recursive function. Our proof is based on a direct 
diagonalization argument and does not rely on the Recursion Theorem which 
had to be used in the original proof. This is achieved by observing that  the speed-up 
theorem is measure-independent (i.e. if it holds in any measure it holds in all meas- 
ures) and then proving it directly for the well-understood computational com- 
plexity measure of tape-bounded Turing machine computations. In this measure, 
the proof loses much of it original difficulty. The speed-up theorem has the strange 
implication that  no mat ter  which two universal computers we select (no mat ter  
how much faster and more powerful one of the machines is), functions exist which 
cannot be computed any faster on the more powerful machine. This is so because for 
any algorithm which we use to compute such a function on the more powerful 
machine another algorithm exists which is so fast tha t  even on the slow machine 
it runs faster than the ot~her algorithm on the faster machine. 

Since functions exist which have no "best"  programs, and thus we cannot classify 
functions by their minimal programs, we turn to the study of classes of functions 
whose computational complexity is bounded by a recursive function. For this study, 
we show for the first time that  for any complexity class whose complexity is bounded 
by a recursive function f, we can uniformly construct a strictly larger class whose 
complexity is given by a recursive function of the complexity of f (i.e. the running 
time of f ) .  The next result, the gap theorem, asserts that  this is the best possible 
uniform result we can obtain by showing that  there exist arbitrarily large "gaps" 
between the complexity classes. Tha t  is, for every recursive function r there exists an 
increasing recursive function t such that  the class of all functions computable in 
the complexity bound t is identical to the class of functions computable in the com- 
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plexity bound r o t. Thus we cannot always obtain larger complexity classes by 
applying a recursive function to the old complexity bound. This result also has the 
interesting implication that when we consider a universal computing machine, 
then no matter how much we increased the computation speed and no matter how 
many new operations we added, there still exist infinitely many recursive complexity 
bounds in which the old and the new machine will compute exactly the same func- 
tions. That is, within infinitely many complexity bounds, no advantage can be 
gained from the additional computing power and speed of the new machine over tile 
old machine. This discussion is followed by another surprising result which shows 
that the complexity axioms admit complexity measures with complexity classes that 
cannot be recursively enumerated. Fortunately, this situation cannot prevail for 
large complexity classes, and it is shown that in any measure all sufficiently large 
complexity classes are recursively enumerable. 

In Section 5 we take a more detailed look at the process of constructing new 
complexity classes by means of the diagonal process. We present a new approach 
which permits us to break down the "price of diagonalization" over any complexity 
class into the "price of simulation" and the "price of parallel computations." 
From this general formulation we can read-off the results about complexity classes 
for special measures once we know how difficult it is to "simulate" and to "parallel" 
two computations in a given measure. This is illustrated by deriving the three 
rather different looking results for the complexity classes of tape-bounded Turing 
machine computations as well as the results for time-bounded computations for 
one-tape and many-tape Turing machine models. In each case the differences in 
the structure of the result are traced back to the differences in the difficulty of 
"simulation" and "paralleling" computations for the three different complexity 
measures. 

In Section 6 we look at the problem of"naming" complexity classes. First we prove 
the union theorem, which asserts that the union of any recursively enumerable 
sequence of increasing complexity classes is again a complexity class. This implies 
that many previously studied subclasses of the recursive functions fit in naturally in 
many complexity measures. For example, there exists a recursive tape-bound L (n) 
such that the class of functions computed by Turing machines whose tape length is 
bounded by L (n) consists exactly of the primitive recursive functions. The second 
major result of this section, the naming theorem, takes some of the sting out of 
the gap theorem, by showing that in any measure there exists a (measured) set 
of functions which names all complexity classes without leaving arbitrarily large 
upward gaps. Unfortunately, it turns out that this naming of complexity classes 
may have arbitrarily large downward gaps. The naming theorem is a rather tech- 
nical result and the proof is still quite difficult. The reader may want to skip this 
proof and proceed to the next section, 

We conclude this overview with a discussion, in Section 7, of the size of algorithms 
or machines in order to capture the notion of how complicated it is to describe an 
algorithm. We start by giving a formal definition of a size measure and then show 
that any two such measures are recursively related. The main result of this section 
shows that in any recursively enumerable list of algorithms there are arbitrarily in- 
efficient representations. This result is then used to look at the economy of forma- 
lisms for representing various algorithms. For example, it is shown that when we 
use primitive recursive schema to represent primitive recursive functions, then there 
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are large inefficiencies in this description of primitive recursive functions. That  is, 
even among the shortest programs in this schema we can find programs which can 
be shortened by any desired amount  by going to a general recursive schema. This 
asserts that,  though we do not need a "go to"  or "if" statement  to compute prim- 
itive recursive functions, the use of these statements can shorten the length of our 
programs drastically and so clarifies their importance in programming languages. 

The last section gives a very brief history of the research described in this paper 
and tries to indicate who did the original work. We have also included a short 
bibliography for possible further reading. 

2. Computational Complexity Measures 

The theory of computational complexity is concerned with measuring the difficulty 
of computations. To do this, we must discuss what is meant by a computational 
complexity measure. 

In this paper we are concerned with computational complexity measures which 
are defined for all possible computations, i.e. for all partial recursive functions map- 
ping the integers into the integers. Therefore, to define a complexity measure, we 
need an effective way of specifying all possible computations or algorithms (for the 
computation of partial recursive functions), and the complexity measure will then 
show how many "steps" it takes to evaluate any one of these algorithms on any 
specific argument. 

For example, our list of algorithms or computing devices could be a standard 
enumeration of all one-tape Turing machines (which we know are capable of com- 
puting all partial recursive functions), and the complexity measure for a given 
machine Mi (or algorithm) working on an argument n could be the number of opera- 
tions performed by Mi before halting on input n. 

A different complexity measure is obtained when we consider (a recursive enumera- 
tion of) all Algol programs and again let the complexity of the ith Algol program on 
argument n be defined by the number of instructions executed before the program 
halts on input n. 

It  should be noted that  these complexity measures are associated with the al- 
gorithms and not directly with the functions they compute. The reason for this is 
that in computations we usually deal with algorithms which specify functions, and 
for each computable function there are infinitely many algorithms which compute it. 
Furthermore, as will be shown later, there exist functions which have no "best"  
algorithm, and thus we cannot talk of the complexity of a function as that  of its best 
algorithm. 

From the preceding examples we see that  a computational complexity measure 
consists of a recursive list of algorithms which compute all partial recursive func- 
tions, to each of which is assigned a step-counting function which gives the amount  of 
resource used by a given algorithm on a specific argument. The assignment of the 
step-counting function, furthermore, satisfies some conditions. If our list of al- 
gorithms is denoted by 4~1, ~ ,  ~3, • • • and the corresponding step-counting functions 
by ~1, ,I~2, ~3, • • • , then we note that,  for our examples, the following two conditions 
hold: 

(1) the algorithm ~b~(n) is defined if and only if ~i(n) is defined; 
(2) for any given number of steps m and any algorithm ~i working on argument 
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n, we can determine (reeursively) whether ~bi(n) halted in m steps, i.e. whether 
¢ , ( n )  = m .  

In  other words, if the i th Turing machine halts on input n, then the number of 
steps it took before halting is well defined. On the other hand, if the i th  machine 
does not halt on input n, then we cannot determine how complex the computation is 
since the measure is not defined. What  we can do for each i and n is to determine 
whether the i th machine halted on input n in m steps for any given n. Clearly we 
achieve this, for our first example, by just performing m steps of the i th computation 
on input n and noticing whether the computation halts on the last step. 

One may impose additional conditions on the complexity measure to more com- 
pletely capture some specific aspect of computational difficulty, but  the conditions 
we have stated are so natural and basic to any notion of computational complexity 
tha t  it is now generally accepted that  they must hold for any computational com- 
plexity measure. The surprising fact is that  they are sufficient to prove many in- 
teresting results about all complexity measures for which they hold. In  a way, the 
rest of the paper will illustrate this although we will look at specific measures to 
strengthen our intuition and illustrate some special results. 

At the same time it should also be observed that  more applied computer scientists 
may be far more interested in results about the complexity of particular problems in 
specific measures. Nevertheless, the approach outlined above is sufficient to start  de- 
veloping the general theory. 

We now make precise the notion of a computational complexity measure. Through- 
out this paper we refer to a computable total function as a recursive function, and 
we use the word "algori thm" for algorithmic procedure even though the procedure 
does not halt  for all arguments. 

Defini t ion.  A computa t ional  complexi ty  measure  ~ is an admissible enumeration 
of the partial recursive functions ¢1,4~2, ,~3, • • • to which are associated the partial 
recursive step-counting f unc t ions  ~ , ~2 , ~3 , • • • such that :  

(1) ~bi(n) is defined iff ~ i (n)  is defined, 

f01 if ~ i (n)  # m 
(2) M (i, n, m) = if ~i (n) = m is a recursive function. 

I t  was seen that  the number of moves of a Turing machine can be used as a step- 
counting function to obtain a computational complexity measure. Similarly, we can 
use the number of tape cells scanned by a Turing machine (provided we agree that 
if the machine does not halt the number of tape cells scanned is undefined) to define 
a measure. In fact, most other natural measures which can be thought of do indeed 
satisfy the definition. Given a set of step-counting functions, one can apply any re- 
cursive function f ( n ) ,  f ( n )  >_ n, or any reeursive, unbounded, monotonic function 
to each step-counting function to obtain a new set of step-counting functions. 
Nevertheless, it will be seen that  the definition of computational complexity measures 
is restrictive enough to eliminate as step-counting functions those functions which 
in no real sense measure the complexity of the computation. For the present it is 
instructive to consider several examples which do not form complexity measures. 

(A) The number of recursions used to define a function in a schema for primitive 
recursion cannot be used for step-counting functions since the schema is not capable 
of representing all partial recursive functions, and thus we do not have an admissible 
enumeration of all algorithms. 
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(B) The functions {,I,~(n)} defined by ~ ( n )  = 0 for each i and n fail to satisfy 
condition (1). 

(C) The functions { ~ } defined by 

(u if ¢ i (n)  is defined, 
¢~ (n) = ndefined otherwise, 

do not satisfy condition (2), since for each i and n, 4~(n) is defined if and only if 
M (i, n, 0) = 1 and thus M (i, n, m) cannot be recursive (otherwise we would be 
solving the Halting Problem).  

Many results are implied by the definition of computational complexity measure. 
The first result is that  for any measure there exist arbitrarily complex recursive func- 
tions. To establish this result, we will show that  for any recursive function f there 
exists a recursive function 4 with the property that  any possible way of computing 

requires more than f ( n )  steps for infinitely many n. To construct 4 we just have 
to formalize the procedure (diagonal process) which looks at each index i infinitely 
often with increasing n and sets 

4 (n )  # 4~(n) if ~i(n) _< f (n) .  

Notation. We say that  i is an index for the function 4 provided 4~ (n) = 4 (n) for 
all n. 

THEOREM 1. Let 4~ be a computational complexity measure and f any recursive 
function. Then there exists a recursive function 4 such that, for any index i for 4, 
• i(n) > f ( n )  for infinitely many n. 

PROOF. Let  r (n) be a recursive function with the property that  for all i, i = 
1, 2, 3, .. • , there are infinitely many n such that  r (n)  = i. Define 

f4~(n)(n) + 1 if ~,(~)(n) < f ( n ) ,  
4(n )  \0 otherwise. 

Since f and r are recursive functions (by the second condition on complexity meas- 
ures), we can compute whether 

¢,(~) (n) _< f(n) 
and thus 4 (n) is a recursive function. Furthermore,  i f j  is an index for 4, then for the 
infinitely many n such that  r (n) = j we have that  ,I~ (n) > f ( n ) ,  as was to be shown. 

By using a somewhat more complicated diagonal process, we next derive the 
stronger result which asserts tha t  for any recursive f there exist recursive functions 
whose complexity exceeds f almost everywhere. To establish this result, we just 
formalize the statement:  "if the complexity ~ ( n )  of the ith function is less than 
] (n) for infinitely many n, then 4 is not the ith function." 

THEOREM 2. Let ~ be a complexity measure. Then for any recursive function f there 
exists a recursive function ¢ such that for any index i for 4, ~i(n ) > f (n ) for almost 
all n. 

P~ooF. Let  f be any recursive function. To construct the function 4 such that,  
for any index j for 4, '1~i (n) > f ( n )  for almost all n, we proceed as follows: for each 
n we look for the first function, smallest index i, such that  ~i (n)  _< f ( n )  and make 
¢ (n) different from 4~ (n), provided this has not been done before. More precisely, 
let s (n) be the smallest integer less than n such that  

¢~(~) (n) _< f(n) 
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and for nora  < n i s  

• 8(n)(nn) < f(m),  with 4~(n)(m) ~ ¢(m).  

If no such integer exists, s (n) is undefined. Let  

f0 if 4~(,)(n) = 1, 
¢(n)  

otherwise. 

Clearly 4~(n) is a recursive function. Assume qb.(n) _< f (n)  for infinitely many n, 
and 4~¢ = 4~. Eventually, for some value of n, say no, the smallest integer k, such that  
,I~k (n0) < f (n0) and such that, for no m < no, is q~i (m) < f (m) with •k (m) ¢ 4~ (m), 
will be j. Thus, by the definition of 4~, 4~ (no) ~ 4~i(h0), a contradiction. Therefore, 
for any index i for ¢, q~i(n) > f (n)  for almost all n. 

COROLLARY. There exist arbitrarily complex 0-1 valued functions in all measures. 

By Theorem 2 we see that  there are arbitrarily complex bounded functions. From 
this we immediately conclude that  there can be no recursive relation between func- 
tions and their complexities, since such a relation would imply a bound on the com- 
plexity of any bounded function. 

TI-IEOREM 3. Let • be a computational complexity measure. 
(A ) Then there does not exist a recursive function k such that for each i 

k(n, V,(n) ) _> q~,(n) 

almost everywhere (a.e. ). 
(B ) There does exist a recursive function h such that for each i 

h(n, q~i(n)) > 4~i(n) a.e. 

PROOF. Assume that  such a k exists. Then the complexity of any zero-one func- 
tion 4~i (n) must satisfy 

• i(n) < k(n, O) + k(n, 1) a.e., 

contradicting the previous corollary. 
To show that  the desired function h exists, let 

fOi(n) if,I~(n) = m, H ( i , n , m )  \1 otherwise. 

The function H is recursive since we can determine whether ,I~i (n) = m; if it is, 
then 4~i (n) is defined and we compute its value; otherwise, the function has value 
one. The function h is defined by 

h(n, m) = maxH( i ,  n, m). 
i~n 

Clearly, if 4~ (n) is defined and i < n, then 

h(n, ~,,(n)) > 4~,(n), 

which completes the proof. 
The second part of this result asserts that  we can bound recursively the size of 

any computable function by its complexity. Thus we conclude that  the "hor- 
rendously" fast growing computable functions are "horrendously" complex. 
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Although there is no recursive relation between the value of a function and its 
complexity, there is a recursive relation between the complexity of an algorithm in 
any two measures. In other words, a function which is "easy" to compute in one 
measure is "easy" to compute in all measures. 

THEOREM 4. Let q, and ~ be complexity measures. There exists a recursive r such 
that, for any i, 

r(n, 4~(n)) > ~,(n)  and r(n, ~ ( n ) )  > ,I,,(n) 

for almost all n. 
PROOF. Let  

r(n, m) = max {q~i(n), ~i(n)  I i ~ n 

Clearly, 

and 

and ~i(n)  = m or &~(n) = m}. 

r(n, ~i(n) ) ~ ~ ( n )  

r(n, ¢,(n)) >_ ¢,(n) 

for all n > i. The function r is recursive since there is an effective procedure to de- 
termine if either ,I~ (n) or ~i (n) is equal to m. Should either be equal to m, then both 
must be defined. Hence the maximum can be effectively computed. 

Saying that  two measures are recursively related does not mean much from a 
practical point of view since the recursive relation may be arbitrarily large. Further- 
more, the recursivc relation given by Theorem 4 may not be a tight bound since the 
relation given depends on the enumeration. Thus if we are comparing the number of 
steps of a single-tape Turing machine to the number of tape cells used, the function r 
of Theorem 4 will depend on the order in which we enumerate Turing machines. 
However, as a consequence of the theorem, we note that  the complexity of any class 
of functions which is recursively bounded in one measure (e.g. polynomials, primitive 
reeursive functions, etc.) is recursively bounded in every complexity measure. 

Before we proceed to the study of more exciting results, we prove a technical lemma 
which shows that  in any measure when we "combine" computations, the complexity 
of the new computation is recursively bounded by the complexity of the component 
computations. This lemma is used repeatedly in the study of computational com- 
plexity. 

LSMMA 1 (Combining Lemma).  Let ~ be any measure and c (i, j )  a recursive func- 
tion such that if ~i (n ) and 4~ (n ) are defined, then so is 4~c(~.j) (n ). Then there exists a 
recursive function h such that 

• c(~.j) (n) _< h(n, ~i(n),  ~ j (n) )  a.e. 

PROOF. Define 

= ~'I~c(id)(n) if ¢ i (n )  = m and 4~(n) = l, p (i, j, n, m, l ) 
otherwise. 

This function is recursive, and we obtain the desired h by setting 

h ( n , m , l )  = max p ( i , j , n , m ,  1). 
{ i , j <  n I. 
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Clearly, for n >_ i, j we have 

h(n, ~ ( n ) ,  ~ ( n ) )  > ~°(~,j)(n), 

and thus the inequality holds almost everywhere, as was to be shown. 

3. Speed-Up Theorem and Applications 

We now give a new proof (without invoking the recursion theorem) of the rather 
surprising result that  there exist functions which have no best algorithms. In fact, 
we show that  for any recursive function r (n) there exists a recursive function 4 (n) 
such that  to every index i for 4 there corresponds an index j for 4 with ,I~i(n) > 
r (Oj (n))  for sufficiently large n. 

For example, if we choose r (n) = 2 n, there exists a recursive function 4 such that  
if 4i = 4, then for some other index j of 4 we have 

¢i (n) _~ log ¢i (n) a.e. 

Furthermore,  this process can be repeated, and we conclude that  there exists an 
index k for 4 such that  

• k (n) ~ log log 'I)i (n) a.e. 

and this logarithmic speed-up can be i terated arbitrarily often. 
Rather  than prove the most general case directly, we first establish the result for 

a specific well-understood measure by a straightforward diagonalization argument 
and then use the fact that  all measures are recursively related to obtain the general 
theorem. The complexity measure which we will use is based on the amount  of tape 
used by a one-tape Turing machine. The machines are so modified that  they never 
cycle on a finite segment of their tape, and thus this measure satisfies the two condi- 
tions of our definition. Furthermore,  we modify them so that  L~ (n) (the number of 
tape cells used by the i th Turing machine on input n)  is larger than the length of the 
description of the ith Turing machine. Finally, we use an enumeration of these 
Turing machines with the property that  the i th Turing machine has at most i dif- 
ferent tape symbols. The advantage of selecting the amount  of tape used as our com- 
plexity measure stems from the fact that  tape can be reused several times for the 
different computations which we will carry out in the desired computation of 4. 

We say that  a recursive function f ( n )  is tape-constructable if and only if there 
exists a one-tape Turing machine which uses exactly f ( n )  tape cells for input n, 
n = 1 , 2 ,  . - . .  

The basic idea of the following proof is quite simple. We construct a function 4, 
which cannot be computed quickly by "small" machines, by running a diagonal 
process in which the stringency of conditions decreases with the size of the machine. 
More explicitly, for a properly chosen function h we formalize the following proce- 
dure for the contruction of 4: "if the i th machine computes 4~(n) on fewer than 
h(n -- i) tape cells, then 4 is not 4~"; we then show that  this diagonal process is 
sufficiently simple that  for any k we can compute 4 on h (n - k) tape cells by a suf- 
ficiently large machine. 

LEMMA 2. Let r (n ) be any recur sive function. Then there exists a recursive function 
4 ( n )  such that for each i for which 4 i (n)  = 4 (n )  there exists a j with 

4~(n) = 4 ( n )  and L i (n )  > r ( L j ( n ) )  

for suffwiently large n. 
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PROOF. Without  loss of generality we can assume that r (n) is a strictly increas- 
ing tape-constructable function. [Otherwise replace r (n) by/~ (n), where/" (n) is a 
strictly increasing tape-constructable function and/" (n) > r (n) for all n.] Define 
h(n) by h(1) = 1, and fo rn  > 1 set 

h(n)  = r (h(n  - 1)) -4- 1. 

Then, for all n > 1, 

h(n)  > r ( h ( n -  1)) 

and clearly h is tape-constructable since r (k) and r (k) + 1 are tape-constructable 
and thus by induction so is h (n). 

We will define the function ¢ (nn) so that:  
(1) ¢~(n) = ¢ (n)  implies that  Li (n)  > h(n - i)  a.e.; 
(2) for each k there exists an index j such that Cj (n) = ¢ (n) and Li (n) _< 

h(n - k).  
This ensures that, given an index i for ¢, there exists an index j for ¢ with 

L~(n) > r (L¢(n) )  a.e. 

To achieve this, select j so that 

Li (n)  < h(n - i - 1). 

Then 

L~(n) > h(n - i )  > r (h(n  - i - 1)) > r ( L i ( n ) ) .  

Construction of ¢ (n). Set 

¢(1)  ={0~1(1)-4- 1 i fL l (1 )  <h(1),otherwise. 

If L1 (1) < h (1), cancel the first Turing machine from the list of Turing machines. 
Forn  = 2, 3, 4 , - . . , s e t  

( ~  (n) + 1 where i < n is the smallest index not already cancelled such 
4,(n) = that  L~(n) < h(n -- i) ,  and cancel index i; 

if no such i exists. 

Clearly if the ith Turing machine computes ¢, then 

L~(n) k h(n -- i )  a.e. 

since for sufficiently large no, each j which will eventually be cancelled has already 
been cancelled, and hence if 

for any n > no, then 

and hence 

L~(n) < h(n -- i )  

¢(n) = ¢,(n) + 

¢~(n) ~ ¢(n). 

Furthermore, for each k there exists a Turing machine j which computes ¢ in 

L~(n) _< h(n - k)  
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tape cells. Turing machine j operates as follows. For each i, i < k, whichever gets 
cancelled, gets cancelled for a value of n < v. For each n < v, j has stored in its 
finite control the value of 4~ (n) and simply prints out the appropriate value. For 
n > v, j computes the smallest i not already cancelled as follows: 

(1) j lays off h (n - k) tape cells; 
(2) j has stored in finite control, the values of i cancelled on input n, n < v; 
(3) for v < m <_ n, j simulates each Turing machine i, k < i < n, determines 

which machine gets cancelled at each value of m < n, and then finds the smallest 
uncancellcd i such that  

and sets 

L i ( n )  < h (n  - i )  

q~(n) = ¢ , (n)  + 1. 

If no i exists, 0 (n) is set equal to zero. The simulations can be carried out in h (n - k) 
tape cells since j simulates only machines with indices greater than k and simulates 
the machine i only until it exceeds h (n - i) tape cells. Since machine i has at most i 
tape symbols, the simulation requires at most 

ih (n  -- i )  < h (n  -- k)  

tape cells. 

Next  we consider arbitrary measures and show that  a speed-up theorem exists for 
all measures. 

TI-IEORE~ 5 (Speed-Up Theorem).  Let • be a complexity measure and r (n ) a re- 
cursive function. There exists a recursive function 4~ (n) so that for each i such that 
¢hl (n ) = ch (n ) there exists a j for which 

¢ i (n )  = ¢~(n) and ,I~i(n) >_ r( , I~(n))  a.e. 

PROOF. Without loss of generality, we assume that  r (n) is an increasing mono- 
tonic function. Since all measures are recursively related, there exists a strictly 
monotonic unbounded R such that  

Li < R(,I~) and ¢~. < R(L i )  a.e. 

provided ,I~ and Lj grow faster than n. Set 

~(n)  = R ( r ( R ( n ) ) ) .  

Select q~ by Lemma 2 so that  for each i such that  ~ = O there exists an index j for 
¢ with 

Li >_ /'(L~) a.e. 

Then 

But  

R ( r ( ~ i )  ) < R ( r ( R ( L ¢ ) ) )  _< L~ < R(¢~)  a.e. 

R (r (~j ) )  g R ('I~i) a.e. 
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and R strictly monotonic implies 

r (,I~) _~ ~i a.e., 

as was to be shown. 

In the next section we show tha t  not all recursive functions can be sped-up, by  
proving that  in any measure there exists an increasing recursive function h such that  
for each sufficiently large running time 4~i there exists a function f with complexity 
Oi which cannot be sped-up by the factor h. Tha t  is, f is computable in running time 
Oi but not in running time ~ if 

h o ~j.(n) < ~ i (n)  a.e. 

Thus in a n y  measure many  functions have h-best programs. 
One should also observe that  the speed-up is not effective in tha t  the value of v in 

the construction of Lemma  2 is not effectively determined. This immediately raises 
the questions as to whether there is some other construction and another function f 
with an effective speed-up. I f  one wishes a small speed-up, say a linear speed-up for 
tape-bounded Turing machines, then there is an effective procedure. ("Small"  here, 
of course, depends on the measure and must  be less than the previously mentioned 
h.) Large speed-ups, however, can never  be effective. Since effectiveness of speed-up 
is measure-independent, we consider the amount  of tape used by single-tape Turing 
machines and show tha t  in this measure large speed-ups are not effective. Again the 
outlined proof makes use of the fact tha t  we can reuse the tape many  times for dif- 
ferent computations. Let  ~b be a function and i l , / 2 ,  • • • be a list of programs for 4, 
with the proper ty  tha t  if Oj = ~, there exists a k so tha t  r (,I,~ k) < ~. a.e. Here r is 
reasonably large and we are faced with the following problem if we assume tha t  the 
list is recursively enumerable. 

Consider an algorithm which for input n marks  off two tape cells, enumerates as 
much of the list i l , / 2 ,  • • • as will fit on half of the amount  of tape marked off, and 
then simulates successively (in a dovetail manner)  each algorithm ~ 1 ,  ~ 2 ,  • " " until 
the simulation tries to exceed the tape marked off. I f  no algorithm has yet  computed 

(n), then two more tape cells are marked off and the process is repeated. In  this 
way, every algorithm O~s on the list is tried eventually and, since the simulation of 
~ by our algorithm does not require more than a constant times the amount  of tape 
used by ~ j ,  we conclude tha t  this algorithm runs in approximately as little space 
(almost everywhere ) as any algorithm on the list. Hence a program running in con- 
siderably less space cannot appear  on the list and therefore we have no r-speed-up 
for the program we constructed. Thus we cannot recursively enumerate any list of 
algorithms for f which contains for any algorithm f an r-faster algorithm. 

Since the speed-up theorem applies to all complexity measures, it can be applied 
to speed up computer  programs. However,  in a computer  program one usually 
wishes to compute a value of a function on a specific input or for some finite range of 
inputs, not on all possible inputs. Reducing the asymptot ic  running time almost every- 
where is not precisely what  a practical computer  scientist is interested in. However,  
the theorem does tell us tha t  we cannot classify functions by their complexity since 
some functions have no intrinsic minimal complexity. Wha t  we shall do instead is to 
define complexity classes and s tudy them in the Section 4. 

Before proceeding with the s tudy of complexity classes, we will discuss one ap- 
plication of the speed-up theorem. Let  us consider two different computers,  both of 
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which can compute all partial recursive functions. One of these computers is assumed 
to have a very rich set of operations and, say, it can perform (10!~°~)! operations per 
second; the other computer is assumed to have only a few of the operations of the 
first machine, and it can perform only one operation every hundred years. We can 
now use these two computers and their programs to define two computational com- 
plexity measures based on their running time measured in seconds. Furthermore,  we 
know from Theorem 4 that  the running times of these two machines are related by a 
recursive function h. Clearly, h will be a very large function indeed. Nevertheless, the 
speed-up theorem asserts that  if we pick functions which have an r-speed-up with 
r > h, we cannot gain any speed advantage by using the faster machine to compute 
these functions since for every program which is used on the fast machine there exists 
another program computing the same function faster (for large values) on the slow 
machine. Note that  the conclusion holds only for sufficiently large values of n and 
that  there is no effective way of finding the program for the slow machine ; neverthe- 
less, we know that  it exists. 

Later  we will find a related result, the gap theorem, which asserts that  we can 
also exhibit an arbitrarily large recursive function such that  the set of functions 
computed in this time bound is identical for both machines. In this case, as will be 
seen, the proof does not rely on the fact that  the slow machine is using bet ter  pro- 
grams. 

4. Complexity Classes 

In the first part  of this paper we postulated two properties which any computational 
complexity measure must have, and we then derived several results about complex- 
i ty measures utilizing only these postulates. We saw that  in any measure there exist 
arbitrarily complex computable functions, tha t  there cannot exist a recursive rela- 
tion between the size of computable functions and their computational complexity, 
that  any two complexity measures are recursively related (they bound each other 
recursively), and finally that  there exist functions whose computation can be "sped- 
up"  arbitrarily. 

We now turn to the study of the classes of functions whose computational com- 
plexity is bounded by recursive functions. More precisely, for any complexity meas- 
ure ~ we define, for any recursive function ~ ,  the complexity class 

C~, = {¢Jl q~.(n) < ~i(n)  a.e.I. 

Thus C~  or C~ consists of all computable functions whose complexity is bounded 
by 4~i almost everywhere. 

We consider first the problem of constructing for any given C~ ,  a new complexity 
class which contains some new function not contained in C ~ .  

The construction of the new class will be achieved by diagonalizing over the total 
functions which are computed in ~i (n) steps. I t  should be observed that  in our di- 
agonMization we should look at each index infinitely often, since the function ~bj is 
in C~ provided Cj (n) < ~b~ (n) for sufficiently large n. Thus even if we find that,  for 
some n, ,I~j (n) > ~b~ (n), we still should check later whether the inequality is not re- 
versed and whether we should not set 4~ ~ ~ -  

This is done by first selecting any recursive function r with the property that  for 
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all i, r (n) = i for infinitely many n. Then define 

let(v) (n) + 1 if ~r(n ) (n) ~ ¢i (n), 
0 (n ) \1 otherwise. 

I f0j  C C,~, then for a sufficiently large n, ~i(n) < 0i(n) and r(n)  = j,  which ira- 
plies that 0 # 0J by construction. (Note that  0j C C~i does not necessarily imply that  
~j _< 0~ a.e., it only implies that  there exists an index k for 0i ,  0J = Ok, such that 
Ok ~ 0~ a.e. Without loss of generality we will assume throughout this paper that  
in such situations we have already picked the correct index. ) Thus 0~ is not in C~i. 
On the other hand, by using the combining lemma, we know that, for some recursive 
h and index k for 0, 

• k(n) < h[n, 'I~r(n)(n), ,I~i(n)] a.e. 

Thus we have obtained the following result. 
THEOREM 6. In  any measure ,I~ there exists a recursive function H such that for 

each total O~ there exists a function f i ,  

fi ~ C~ and fi ~ C~n,,~(,)l. 

The above formula can be simplified by deleting the first argument of H(n, Oi (n))  
for ,I~i (n) > n. We cannot do this in general, since if one of our measures is the 
number of tape cells used by an off-line Turing machine and ~ (n) is constant (in 
reality the Turing machine is a finite automaton),  then H ( ~  (n)) would be a con- 
stant and could not bound, say, the number of steps performed by a Turing machine 
whose complexity grows at least linearly with the size of the input, 

COROLLARY. In any measure • there exists a recursive function k such that for all 
total O~ (n ) such that ~ (n ) >_ n there exists an f~ (n ) such that 

fi ~ C,, and fl E Cko¢,. 

By a slight modification of the previous proof (by replacing H by an increasing 
R), we can obtain a new complexity class which properly contains the old class. 

COROLLARY. In any measure ~ there exists a recursive function R such that for all 
Oi total 

C¢i ~ CR[n,Oi(n)]" 
Again, i f  we consider su~eiently di~cult recursive functions Oi, that is, ~i(n ) _> n, 

c then we can drop the n from the above equation and obtain C~ # C~o.~ . 
The previous results show that  in any complexity measure we can obtain new 

complexity classes uniformly in the running time of any recursive 0~ ; that  is, 

C~ ~ CRo,~. 

The proof of this result was quite simple, and we saw that  the running time ~ entered 
the expression because we had to compute 0~ in order to bound the number of simu- 
lation steps of Or(n) (n). If we could bound the size of the running time ,I~ recursively 
to the size of the function 0~, we would have a result which would yield new com- 
plexity classes uniformly in 0~ instead of in the complexity ~ .  On the other hand, 
we know that  the complexity of the function cannot be recursively bounded by the 
size of the function and this leads us to suspect that  there is no recursive q such 
that C,~ ~ Cq°,~ for all sufficiently large 0~. The next result proves this suspicion, 
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establishing the previous result as the strongest uniform result which we can get 
when we consider all total  functions. 

The gap theorem, which we prove next, can be viewed as an assertion tha t  for any 
complexity measure the step-counting functions are sparse relative to recursive 
functions. The reason for this is tha t  the second condition for complexity measures 
permits us to decide whether  ~ (n) < m for all n, m, and i. This is so s t rongacondi-  
tion tha t  using it we can construct for every recursive r a recursive t such tha t  no 
step-counting function falls infinitely often between t and r o t, thus ensuring tha t  
whatever  can be computed in bound r o t can also be computed in bound t. 

THEOREM 7 (Gap Theorem) .  In any complexity measure ~ for any recursive func- 
tion r, r(n ) > n, there exists a recursive monotonically increasing function t such that 

C, = C,o~. 

PROOF. Let  ~1, ~2, ,I~3, • • • be the enumeration of the running times of the com- 
plexity measure ,I~. We define the desired t inductively: let 

t(1) = 1, 

t(n + 1) = t (n)  + i n ,  
where 

m n =  min {m I for each i < n either ,I~i(n -4- 1) > r o [t(n) -I- m] 

o r ¢ i ( n - 4 -  1) < t (n)  A-m}. 

The last predicate is recursive, and thus we can test  it for m = 1, 2, 3, • . . .  To 
see tha t  this procedure will find the desired ran, note tha t  there are only a finite num- 
ber of ~ ( n  -4- 1), i < n, and thus there exists an m so tha t  

• ,(n + 1) ~ t (n)  + m 

for all i, 1 < i < n, such tha t  ~ (n + 1) is defined; if ~ (n + 1 ) is not defined, then 
clearly 

• ~(n + 1) > r o [t(n) + m] for all m. 

Thus a desired m exists, and we conclude tha t  t (n) is a reeursive function. 
To have C~ ~ C~°t we must  find a ~¢ such tha t  q~¢(n) < r o t(n) a.e. and not 

~,¢(n) < t(n)  a.e. This is impossible by  construction of t since ~¢(n) < r o t(n) a.e. 
implies ~. (n) < t (n) a.e. Thus,  

C, = Cr°,. 

The gap theorem shows tha t  there are arbitrarily large gaps among the recursive 
functions which contain no running times (infinitely often).  The complexity classes 
defined by  the functions bounding such a gap are identical. This also implies tha t  we 
cannot have a recursive way of increasing every sufficiently large total  function 4~ 
to r o ~b~ to get a computat ion bound for some computat ion not in C ~ .  

At the same time, it is worth recalling tha t  there exists a recursive way of increas- 
ing the running time ~ of any total  function 4~ to get a bound for a computat ion 
which is not in C¢~, tha t  is, Co~ ~ CRtn.a~(n)l • We shall now use this result to see for 
what  subclasses of the recursive functions we can recursively increase the complex- 
ity bound to obtain new computations.  

We first observe tha t  for tape-bounded computat ions the running times or tape 
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bounds realized by Turing machines are computable in their own bounds. More pre- 
cisely, there exists a recursive function a such that  for every tape bound L~ we have 

4~(~)(n) = Li(n)  and ~o(~) C CL,. 

The function a just produces a new machine from M~ which checks how much tape 
M~ used, and then converts the number of tape squares into the proper (say, binary) 
output form. Under proper output  conventions, the same is true for the time- 
bounded computations of multitape Turing machines, which suggests that  measures 
with self-computable running times deserve special attention. 

Definition. A computational complexity measure 4, is said to be proper if there 
exists a recursive function a such that  for all i, 

~,(~) = 4,i and ~,(~) E Cat. 

This leads us to our next result. 
COROLLARY. In  any proper measure 4, there exists a recursive function R such that 

for all i, 

PROOF. Since ,I~ is 4,~ computable we can replace ¢~ by 4,~ in the second corollary 
of Theorem 6. 

The previous result can easily be extended to all measures if we note that  in any 
measure the size of the step-counting functions recursively bound their computa- 
tional difficulty. 

LEMMA 3. For any measure 4, there exist two recursive functions ~ and r such that, 
for all i, 4,,(n ) = 4~(i) (n ) and r[n, 4,i(n)] > ~,(1) (n) a.e. 

PROOF. The fact that  for all i, m, and n we can decide whether ~b~(~) (n) = m per- 
mits us to give a proof very similar to that  of the combining lemma. We set 

P ( i ' n ' m ) = { ~  "(')(n) otherwise,if¢~(~)(n)--m' 

and then let 

r[n, m] = max p (i, n, m ). 

It is seen that  r gives the required bounding function. 

Combining this result with Theorem 6, we get the following theorem. 
THEOREM 8. For any measure 4, there exists a recursive function h such that for all i, 

C~ ~ Chin.el(n)]. 

PROOF. We just observe that  the result of Lemma 3 substituted in the result of 
the second corollary to Theorem 6 yields the desired relation. 

When we look back at the last result, we see that  the running times can be re- 
cursively increased to obtain bounds for new computations. This result relied pri- 
marily on the fact that  we could enumerate the running times 4,~ and determine 
whether ,I)~ (n) = m. We now generalize this observation. 

Definition. A set of functions {7~} which can be recursively enumerated and for 
which we can decide for all i, m, and n whether 7~(n) = m, is called a measured set 
of functions. 
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Note that  the running times of any complexity measure form a measured set and, 
furthermore, the property of being a measured set is not dependent on the complex- 
ity measure. 

The above definition permits us to state a more general result. 
THEOREM 9. Let {~1 be a measured set of functions. Then in any complexity 

measure (I, there exists a recursive function r such that 

We observe that  for any measured set there exists a recursive a and h PROOF. 
such that  

¢~<~) = ~ and ~(i) (n) ~ h[n, 4~(~)(n)] a.e., 

and then invoke the second corollary of Theorem 6. 

Next we take a look at the problem of enumerating all the functions in a complex- 
i ty class. 

We sav that  the complexity class C ~ t is recursively enumerable if there exists a re- 
cursively enumerable set of indices which contains an index for every function in Ct a 
and only indices for functions in Ct a. Note, however, that  we do not insist that  the 
algorithms named in this enumeration run in the bound t; we only require that  they 
name functions for which there exists some algorithm running in the bound t (almost 
everywhere).  

I t  turns out that  the three specific complexity measures discussed in this paper 
have recursively enumerable complexity classes. We will show that  this is the case in 
any complexity measure for sufficiently large complexity classes (bounds). On the 
other hand, we will also show that  there are complexity measures for which some 
complexity classes cannot be recursively enumerated. This is rather surprising, since 
it implies that  there is no effective way of describing what functions arc contained 
in these classes. I t  suggests that  these complexity measures are rather  pathological 
and that  additional conditions should be imposed on complexity measures to elimi- 
nate these cases. 

First, we observe that  for any recursively enumerable set of recursive functions 
we can bound (a.e.) their running times. 

LEMMA 4. Let • be any measure and A a recursively enumerable set of total func- 
tions. Then there exists a recursive t such that A ._C Ct . 

PROOF. Let  i~, i2, i3, •. • be a recursive enumeration of A ; then define 

t (n) -- max {~ij(n) l j ~ nl.  

Clearly, t (n) is recursive and for each j, ,I~i# (n) < t (n)  a.e. Thus A c_ Ct. 

In our next result we will use the set of functions of finite support 

= {¢i I ¢~(n) is total and e l (n )  = 0 a.e.}. 

The set ff is easily seen to be recursively enumerable, and therefore in any measure 
there exists a recursive t such that  ff c Ct a. We now show that  all complexity 
classes which contain C~ are recursively enumerable. 

THEOREM 10. Let • be a complexity measure and t such that ~ C Ct ~. Then for each 
recursive Cj (n ) > t(n ), the complexity class C~i is recursively enumerable. 

PROOF. Let  ¢~ (n) > t(n) and consider the recursively enumerable set of func- 
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tions 

with 
{4~(i.p,w)[i= 1, 2, 3 , " -  a n d p ,  w = 0 , 1 , 2 , 3 ,  - . .}  

i i ( n )  if for each k _< p, ~ ( k )  _< w, 
~b~(~,p,~)(n) = and for each k, p < k _< n, ~ ( k )  < 4~i(k); 

otherwise. 

Thus 4~(~.p.w ) is equal to ~ if the complexity ~i (n)  _< ~j(n) for all n > p and for 
n _< p, ~ ( n )  < w; otherwise O~(i,p,w) is of finite support. If 

,I)i(n) < ~s(n) a.e., 

then, for some p and w, 

and thus every ~ in C~j appears in our enumeration. Furthermore,  since all func- 
tions of finite support are in C~i, we can conclude that  we have only functions from 
C ~ .  Thus a (i, p, w) gives the desired enumeration. 

The following result shows that  there exist complexity measures in which "small" 
complexity classes cannot be recursively enumerated. 

THEORE~I 11. There exist complexity measures ~ and recursive t such that Ct ~ is not 
recursively enumerable. 

PROOF. Let  ~ x ,  ~ ,  " " " be a recursive enumeration of the constant functions 
such that  ~s  (n) = j. Define the measure • as follows: for all k ~ is, j = 1, 2, • • • , 
let ~k (n) >_ n, and let 

~ i i (n)  = { ~ i f M s ( j )  d o e s n o t h a l t i n n s t e p s ,  otherwise. 

Thus Co consists of all those constant functions 4~i i (n) = j for which the j th  Turing 
machine M s does not halt on input j .  Therefore, if ~bk~, 4,k~, ~bk3, " " " is an enumera- 
tion of Co, then ~kx (1), ¢~ (1), ~ (1), . . .  is an enumeration of {Jl Ms( j ) l  does not 
halt}. This is a contradiction, since this set is known (and can easily be shown) not 
to be recursively enumerable. 

It  is interesting to observe that  this proof relies heavily on the fact that  in this 
measure a finite change in ~ could create an infinite change in its complexity ,I,~. 
If this is not the case, then all complexity classes are recursively enumerable. The 
following result captures some of this observation. 

COROLLARY. Let • be a measure with the property that ~ = 4~s a.e. implies ~ ~ C~ 
if and only i f  ~ ~ C~. Then all complexity classes of • are recursively enumerable. 

The proof of this result is similar to the proof of Theorem 10. 

5. Simulation and Parallelism 

In this section we take a more detailed look at the diagonalization process over com- 
plexity classes and express the complexity of this process in terms of the complexity 
of "simulation" and running two computations in "parallel." This approach per- 
mits us to gain more insight into this process and to derive easily some results about 
specific complexity measures. 
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In the previous section we considered the following diagonalization process which 
works for any i, provided ~ is a total function, yielding a function not in C~ : 

Od{~)(n) = { : r (~ ) (n )+ l  if~r(~)(n) <~(n ) ,o the rwi se ,  

where r (n) is any computable function with the property that for each i there exist 
infinitely many n for which r (n) = i. We now change this process slightly to obtain 
the results previously derived for specific measures. 

Instead of checking whether the computation of ~b~(n)(n) has used less than 
~bi(n) steps--i.e., whether ~{~) (n) < ~bi(n)--we construct a machine (find an al- 
gorithm ) which computes Cr(~ ) (n), and then put a bound on how long this algorithm 
is allowed to "simulate" ~(~) (n). Thus in the first diagonal process we bounded the 
number of steps simulated in the computation of ~b~(/) (n). In the new process we bound 
the number of simulation steps used in the computation of ~,(~)(n). More precisely, 
let 

~ ( n )  = ,~r(~)(n) + 1 
and 

¢~D(~)(n)=(:s(n) if ~s(n) < O~(n), otherwise. 

Next we express the complexity of the simulation and the shutting off of the simula- 
tion, (I'D(j), in terms of the complexity ~r{~) (n) and ,I)~(n). 

LEMMA 5. In any measure ~ there exist recursive functions S and P such that 

and 
S[n, ~r(~)(n)] > ~s(n) 

P[n, ,I~,(n)] ~_ ¢D(,)(n) 

for all i and almost all n. 
PROOF. Let 

S [ n , m ] = { : s ( n )  if~r(n)(n)=m,otherwise. 

To construct P, proceed as in the combining lemma by letting 

p ( i , n , m )  = {:D(~)(n) i f ~ ( n )  =m,otherwise, 

and then let 
P[n, m] = max p(i, n, m). 

The next result gives a uniform way of constructing new complexity classes. 
THEOREM 12. For any measure there exist two recursive functions S and P such 

that for all recursive ¢i and 4~i , 

Sin, ¢~i(n) ] < O~(n) 

implies that there exists a recursive function f such that 

f ¢i C~j but f C CP~n.¢,(n)l. 

Comment. Intuitively, the result asserts that if the time lost in simulating the 
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Oi bounded computations does not exceed 4~i, that  is, S[n, 4~i (n)] < 4)i (n), then we 
can diagonalize over these computations in time 4~. Furthermore, the cost to shut 
off the simulator after it has used up ~ (n) steps is related to the difficulty of com- 
puting 4~ (n), namely ~ (n), and is given by P[n, ,Fi (n) ] which describes the difficulty 
of attaching the shut-off mechanism (or putting it in "parallel" with the simulation). 
Thus the complexity of the diagonal process does not exceed Pin, ~i (n)], and there- 
fore there exists a function f C CPi~..~(.)1 such that  f ~ Coj. 

PROOF. Let S and P be total functions which satisfy Lemma 5, and let S be non- 
decreasing in its second variable (i.e. lc > l implies that  for all i, S[i, k] > S[i, l]). 
Let f ( n )  = 4~o(~)(n), and note that  

Pin, ~,(n)] Z CI'D(,) (n) a.e.; 

therefore 4~,(i) (n ) C CeI~,ai(~)~ . 
To show that  4~D(~)(n) is not in C¢~ consider any ~ in C~ whose complexity is 

bounded by 4~, ~ (n) < ~ (n) a.e. By Lemma 5 we know that, for sufficiently large 

• ~(n) _< S[n, ~ ( ~ ) ( n ) ] .  

Furthermore, by construction of r for arbitrarily large n, r (n) = k; therefore 4~ (n) 
= ~b~(~) (n) and ~ (n) = ,-I,~(~) (n). Thus for a sufficiently large n, 

~,~(n) _< Sin, ~ ( n ) ] ,  

and since ~k(n) < ~b~.(n), we see that  

Sin, ~k(n)] < Sin, 4~(n)]. 

But by the hypotheses of the theorem, 

and therefore 

which implies that  

Sin, ,~(n)] < ,~,(n) 

• s(n) < ,~(n) ,  

4,s (n) = 4'r(n)(n) + 1 = 4'k (n) + 1. 

But then 4~k ~ 4'D¢~) • Hence, recalling that  f ( n )  = 4~D(1) (n), we have that  f is in 
CPEn.~(n)3 and f is not in C~i, as was to be shown. 

By a slight modification of the proof of Theorem 12, we obtain our next result. 
COROLLARY.  In  any measure there exist two recursive functions S and P'  such that 

for all recursive 4~i and 4~ , 

S[n, ~j(n)] < ~i(n) implies that C~ i ~ CP, t~.a,(,)l. 

This result establishes a sufficient condition for one complexity class to be properly 
contained in another. Unfortunately, again these results are not uniform in ~ but  
only uniform in (I)~, and the gap theorem asserts that  this is the best we can do. 

To strengthen our intuition and grasp of this general approach, we now look at 
several specific measures. As will be seen, for specific complexity measures we can 
often derive very tight bounds for the simulation time S and for the cost P of putting 
two processes in parallel. 

The specific measures under consideration are based on Turing machine computa- 
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tions. To simplify our reasoning and permit us to derive the results in their original 
form, we make some minor modifications in our complexity measures. We will view 
the Turing machines as recognizers of input sequences (thus they compute zero-one 
functions) and the parameter of the input will be its length l (not the size of the 
number represented by the input) .  

5.1. TIME-BOUNDED COMPUTATIONS. First we outline the specific measure based 
on time-bounded Turing machine computations. 

Definition. A set of sequences R is T(1)-acceptable if and only if there exists a 
multitape Turing machine which accepts the set R and for inputs of length l uses 
no more than T (1) operations. To indicate that  we are dealing with multitape Turing 
machines, we denote the class of all T-acceptable sets by Cr M. 
[It should be observed that  the step-counting measure based on the length of the in- 
put  sequence (over a k-symbol alphabet, k > 2) does not strictly satisfy the com- 
plexity axioms because M may hMt on some input of length I and not on some other. 
Thus we cannot assign a unique running time based only on the length of the input. 
Our definition overcomes this by looking only at CT M for recursive T and insisting 
that  all inputs of length l are processed in no more than T (1) operations. The purist 
can get out of these troubles by restricting the input to a one-symbol alphabet and 
representing n by a sequence of n + 1 symbols and defining l = n + 1. Under this 
input convention, the following results remain unchanged.] 

To utilize our previous result, we must now determine a good simulation bound S 
and a good shut-off price P. In simulation, the difficult problem is to simulate ma- 
chines with arbitrarily many tapes on a machine with a fixed number of tapes. 
Fortunately,  there exists a clever simulation method which yields a good result [1]. 
The proof of this result is quite hard, and since it is used only once in this paper, we 
do not include it here. 

LEMMA 6. There exist two computable functions r (n ) and c (n ) = C[r (n )] and a 
two-tape Turing machine M such that 

M (n ) = Mr(,~) (n ) + 1, 

and if  Mr(,~) (n ) halts in t operations, then M (n ) halts in no more than 

c(n)t  log t + c(n)  
operations. 

Comments. 
(1) For this model there exists a simulation function S such that  

Sin, t] < c (n) t log  t + c(n) ,  where c(n) = C[r(n)]. 

(2) The function r(n) ,  say for a three-symbol input alphabet {0, 1, a}, can be so 
chosen that  it depends only on the binary prefix up until the first "a" marker and 
that  this prefix is interpreted as a very direct encoding of a Turing machine's state 
table. Thus for every Mi there exists an x, x ~ (0 + 1)*, such that ,  for all y C 
(0 + 1 + a)*, 

r (xay) = i. 

This decoding function r has the advantage that  whenever Mi is simulated, its state 
table description is in the same form and the operations required to start  and carry 
out a simulation step depends only on the prefix x and not on the length of the whole 
input. (For the "purist 's"  case, when we use a unary input alphabet we are forced 
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into using more subtle decoding techniques, but  with a bit of thought they can be 
supplied for tile three models under consideration.) 

THEOREM 13. Let T(l) be the running time of some multitape Turing machine. 
Then for every total function ¢, 

lim .4~(l) log ¢( l )  _ 0 implies that C~(z)M ~ Cr(~)M . 
~-~ T(l) 

PROOF. We outline the proof to explain the limit condition and the use of the 
running time. The limit condition implies that,  for any c > 0 and for sufficiently 
large l, 

cO (l) log ~ (1) < T (l). 

Thus C~ M _c Cr M, and for some sufficiently large n, 

SIn, V(1)] < T(I)  

where 1 is the length of n, and n is used to compute 0r(n) (n). But  then we can diag- 
onalize over all R in C~ M in T (l) operations and, since T (1) is a running time of some 
Turing machine M r ,  we can run M r  on separate tapes in parallel with the simulator 
and shut off the process when M r  halts. Thus Pin, T(1)] = T(I) ,  and we conclude 
that OD(i) C CT M but  CD(i) ~ C~ M, as was to be shown (viewing 4~,(i) as the charac- 
teristic function of a set of sequences). 

5.2. ONE-TAPE TURING MACHINES. Next we look at complexity classes defined 
by time-bounded one-tape Turing machines. 

Definition. A set of sequences R is T (l)-acceptable by a one-tape Turing machine 
if and only if there exists a one-tape Turing machine which accepts R and uses no 
more than T(1) operations to process inputs of length l. The class of all T(l)-ac-  
ceptable sets is denoted by CT 1. 

For one-tape Turing machines, the simulation problem is considerably simpler 
than for many-tape machines. As a mat ter  of fact, for simple r (n) functions the 
simulation can be carried out on a one-tape machine within a constant time of the 
machine simulated; tha t  is, 

S[n, t] _< c(n)t + c(n), where c(n) = C[r(n)]. 

This is achieved by always keeping a copy of the description of Mr(m) near the place 
of the simulation (say on a separate track of the tape).  Since the length of the de- 
scription is fixed, as is the number of tape symbols Mr(.) can use, we see that  each 
step of the Mr(n) computation can be simulated in a fixed number of steps of M (in- 
cluding moving the Mr(a) description along). 

On the other hand, the shutting off of the simulation process after T (1) simulation 
operations is more difficult than for the many-tape model (where we just ran the 
shut-off counter in parallel on separate tapes).  The difficulty comes from the fact 
that we have to run two independent computations on the same tape with one head. 
One way of doing this is to run the two processes on different tracks of the tape and 
move one of them, if necessary, to insure that  the "head positions" of the two proc- 
esses do not separate. If we do this, then we are interested in making sure that  the 
computation which we have to move is not too long. This is achieved by choosing 
T(l) to be the running time of a one-tape Turing machine using no more than 

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971 



466 J .  I-I_ARTMANIS AND J .  E .  H O P C R O F T  

log T (1) tape squares. For such T (l), it can easily be seen that  

Pin, T(1) ] < T(1) log T(l).  

Thus we obtain the corresponding result for one-tape machines. 
THEOREM 14. Let T (1) be the running time of a one-tape Turing machine which 

computes T (1) on log T (l) tape squares. Then, for any total oh, 

lim ¢(l) n ~  ~ = 0 implies that C~ 1 ~ Clrl~r. 

Note how the two results differ in structure because for many-tape machines 
simulation is expensive and parallelism free, whereas for the one-tape model simula- 
tion is cheap and parallelism expensive. 

5.3. TAPE-BOUNDED COMPUTATIONS. We conclude by a look at tape-bounded 
computations. 

Definition. A set of sequences R is L (l)-tape acceptable if and only if there exists 
a Turing machine M which accepts R and which uses no more than L (1) tape squares 
to process inputs of length 1. The set of all L-tape acceptable sets is denoted by CL r. 

For tape-bounded computations, it can easily be shown that  simulation costs only 
a constant times more, thus 

Sin, l] < c(n)l + c(n), where c(n) = C[r(n)]. 

and parallelism is free; that  is, 

P[n, i ( l ) ]  _< i (1)  

(provided L (l) can be computed on L (l) tape). Thus for tape-bounded computa- 
tions we get the following result. 

TI~EOREM 15. I f  L(1) is computable on L(1)-tape, then 

lim 4~(l) ~® L ~  = 0  implies that C~ r ~ C~ r. 

Thus we see that  the structure of this result reflects the fact that  simulation is 
cheap and parallelism is free for tape-bounded computations. 

6. Naming of Complexity Classes 

In this section we study two related problems. The first arises naturally when we 
look at some well-known subclasses of the recursive functions, like the primitive re- 
cursive functions, and try to locate them among the complexity classes of a given 
measure. Usually these subclasses of the recursive functions are defined by the struc- 
ture of their algorithms, and it is quite reassuring that  they fit in naturally among the 
complexity classes. We show, in fact, as an application of the union theorem, that 
for many complexity measures ~ there exist recursive t such that  Ct a is exactly the 
set of primitive recursive functions. 

The second problem arises when we ask for "good" ways of naming complexity 
classes. Recall that  the gap theorem asserted that  in any measure for any recursive 
r there exists a recursive t such that  Ct -- Crot. Thus we can construct functions 
which "name"  the same complexity class but which are as far apart as we wish. This 
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seems to imply tha t  we have chosen improper  functions to name the complexity 
classes. I t  turns out tha t  this is the case and that  we can do much better.  We cannot 
always name all complexity classes with the step-counting functions of the measure, 
but we do show tha t  there exists a measured set of functions which names all com- 
plexity classes. 

First we show that  the union of any recursively enumerable hierarchy of complex- 
ity classes (sequence of increasing complexity classes) is itself a complexity class. Let  
{fi [ i = 1, 2, • • • } be a recursivcly enumerable set of functions such that ,  for each i 
and n, 

f , ( n )  < f~+,(n). 

I t  suffices to show tha t  there exists a recursive function which is greater  than fi  (n) 
for each i and almost all n but  is infinitely often less than each step-counting func- 
tion which is greater  than fi  (n) for each i and almost all n. Then the complexity 
class defined by  the function will be U~ Ci~ • 

Clearly, the function t (n) = f~ (n) is greater  than fl  (n) for each i and almost all 
n. However, there may  exist a ~bs for which 

(1) ~s (n) < t (n) for almost all n, and 
(2) ~s (n) > f~ (n) for each i and almost all n. 

Thus 4~s is in Ct but  not in the union of Cyi. The way to avoid this difficulty is to 
guess for eachj  tha t  some f~j majorizes q~s. If  we detect tha t  for some n, ,I)s(n) > f~j (n), 
then we assign a value to t (n) which is less than ,I~ s (n) and guess that  some larger f i  
majorizes ,I) s (n). I f  Cs is in U iCf~, eventually we will find an f~ majorizing ,I~j and t 
will be greater than ~j almost everywhere. On the other hand, if ~bj is not in the 
union, then t will be less than ,I~ s infinitely often (i.o.) and thus 'bs will not be in Ct. 
We formalize this intuitive idea in the proof of the union theorem. 

THEOREM 16 (Union Theorem) .  Let {f l ] i = 1, 2, . . .  I be a recursively enumerable 
set of recursive functions such that for each i and n, f~ (n ) < fi+l (n ). Then there exists a 
recursive function t (n ) such that Ct = [Jl Cir. 

PROOF. Construct  t such tha t  
(1) for each i, t (n)  >_ f i ( n )a . e .  
(2) if for each j ,  ~ i (n)  > L ( n )  i.o., then t (n)  < ,I~(n) i.o. 

In the construction of t we will maintain a list of indices i l , / 2 ,  i~, • • • . The list will 
be repeatedly updated,  and at the nth  step, when we compute t (n), the interpreta-  
tion is as follows: is = k means tha t  currently we are guessing that  fk _> ~s almost 
everywhere. To compute t (n) ,  we check whether all our guesses are correct. 
The checking of our guesses proceeds as follows: we s tar t  with the smallest k 
such that  k = i j ,  and determine whether fk (n) > ,I~j (n) ; if this condition is satis- 
fied for all k, then we set t (n) = f~ (n) and enter a new guess tha t  f ,  > ~ a.e. 
by setting i~ = n. On the other hand, if one of our guesses is wrong, f~ (n) < ,I~s (n), 
then we set t (n) = f~ (n) and change our guess to ~j < f~ a.e. by setting i s = n. In  
this case, we also add the new guess in = n and repeat  the process for n = n + 1. 
This process is summarized more formally below. 

Construction of t. Initially, i s is undefined for each j ,  i.e. the list is empty.  Set 
n = 1. Go to step n. 

Step n. Let k be the smallest integer such that  there exists a j for which the j t h  
item on the list is k (i.e., is = k ) and f~i (n) < ~i (n). I f  more than one such j exists, 
select the smallest. Define t (n) = fi~ (n) and set is = i~ = n and n = n + 1. Go to 

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly  1971 



468 J .  H A R T M A N I S  A N D  J .  E .  H O P C R O F T  

step n. If no such j  exists, define t (n)  = f~(n).  Set i~ = n and set n = n + 1. Go 
to step n. 

Proof that Ct = Ui Cy~. 
(1) ~g in U~ Ci~ implies that  there exists an i such that  4~ in C]~ and therefore 

• g _~ f l  a .e .  

But t > f~ almost everywhere since eventually, for each j,  i s will take on a value 
greater than i, or i~. is such that  fi~ (n) majorizes ,I~ (n). From this point on, t >_ f l .  
Therefore 4~g C Ct. 

(2) Og C Ct implies tha t  ,I~g _< t a.e. and thus there exists anfk such that  fk > ~g 
a.e., or else infinitely often ig would be the smallest number  on the list suchthat  
fig < ,I~g and t would infinitely often be less than fi~--a contradiction. But  4~g in C/k 
implies that  Og in O~ Cs~, as was to be shown. 

Consider now the primitive recursive functions and the complexity measure which 
counts the steps of a single-tape Turing machine. We claim that  g primitive re- 
cursive implies that  there exists a primitive recursive t such that  g is in C~. The reason 
for this is that  the successor function, the zero function, and the projection function 
are in a complexity class determined by a primitive recursive function; the recursive 
function bounding the complexity of composition and recursion is primitive recur- 
sive, and the class of primitive recursive functions is closed under composition. 

We further claim that  any complexity class determined by a primitive recursive 
function contains only primitive recursive functions. The reason for this is that  primi- 
tive recursion is sufficient to simulate a Turing machine for a primitive recursive 
number  of steps. 

Note that  we need only know that  there exists a recursively enumerable sequence 
of primitive recursive functions such that  every primitive recursive function is 
majorized in order to show that  there is a time complexity class consisting of pre- 
cisely the primitive recursive functions. Let  g~, g2, "-" be such a sequence, then 
f l , f 2 ,  " "  , where 

f~(n) = max {gl(n), g2(n), . . .  , gi(n)l  + i, 

is a sequence satisfying the union theorem. The desired result  follows immediately 
and we state it as a corollary of the union theorem. 

COROLLARY. There exists a recursive function t such that the set of functions com- 
putable on a one-tape Turing machine in the time bound t is exactly the set of primitiw 
recursive functions. The same result holds for many-tape time-bounded Turing machine~, 
as well as for tape-bounded Turing machines. 

Note that  for any measure which is related by a primitive recursive function t( 
the number of steps on a single-tape Turing machine the primitive recursive func 
tions form a complexity class. Another interesting observation is that  the complexit) 
class consisting of precisely the primitive recursive functions cannot be named by 
primitive recursive function. If it were named by a primitive recursive t (n), ther 
t (n) would lie in some level of the Grzegorczyk hierarchy and thus Ct would not con 
tain higher levels. This suggests that  the function naming the complexity class i~ 
very complicated. 

Furthermore,  we saw from the gap theorem that  the same complexity class cat 
be named by radically different functions. Namely, in any measure for any recursiw 
function r we can construct a recursive function t such that  Ct = C,°t. In all thes~ 
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cases, the functions turn out to be very complicated in that  their complexity differs 
widely from their size. This leads us to the problem of trying to name all complexity 
classes with functions which are not too complex. 

The above observations lead us to the problem of finding a recursively enumerable 
set of functions which name all complexity classes of a measure and which have the 
property that  their complexity is recursively bounded by their size, i.e. an honest set 
of functions. The next result, the naming theorem, assures that  this is always possible 
in that all complexity classes can be named by a measured set. Our strategy consists 
of picking for every recursive ~t a 4~t, in a measured set so that  C~t = C~,,. Setting 
~t, = max (~t,  ~bt) insures that  ~t, is honest. However, it may be the case that,  for 
some i, ~bi is a member of C~,, but  not a member of C~,. To resolve this difficulty 
~t, can be decreased below 4~i (n) for infinitely many n. The values of n are selected 
so that ~t, (n) is also reduced to keep the function honest. In decreasing 4~t, (n) be- 
low • ~ (n), we must ensure that  4w does not infinitely often dip below some ~# which 
is almost everywhere less than ~t.  Otherwise, 4~j is a member of C~, but  not a mem- 
ber of C~,,. The next theorem is proved by formalizing the above ideas. 

THEOREM 17 (Naming Theorem).  For each measure ~ there exists a measured set 
naming every complexity class. 

PROOF. We must show that  there exists an r (n) such that  for each ~bt we can 
construct Ct, with 

(1) r(n, ¢~t,(n)) ~_ ~t , (n)  a.e., and 
(2) C~ = C,~, (i.e., ~ < 4~t a.e. ¢=~ ,I~ < ~bt, a.e.) 
Two lists are used in the construction of ~ , .  List 1 contains functions ¢~ for which 

we discover there exists an n such that  

~t(n)  < ~ , (n)  _< Vt,(n). 

The function 4~ is removed from this list when we assign 

¢ht, (m) < ~,(m) 

for some m. At stage k, List 2 will contain each 4~, J _< k, which is not on List 1, and 
thus will contain each 4~' for which 

and for which we set 

in removing some i from List 1. 

• i (m)  < ~t(m) 

~,,, (m) < ~ ( m )  

For k = 1, 2, 3, • • • , perform the following computation. Place k on List 2 with 
priority k (priority 1 will be highest, 2 next, and so on.) 

Test to determine if  ~ (n) > Ct (n). For each i _< k and each n < k such that  
~t (n) < i, compute 4~t (n) unless it was computed for a smaller value of k. Place i 
on List 1 if not already on List 1, and assign priority i (remove from List 2 if on 
List 2) if ~ (n) > ~t (n). 

Try to Jorce ¢ht' below some i with high priority index on List 1. Let  a (k) < k 
be a function which takes on each integer infinitely often. Let  m = a (k). If 4~t' (m) 
is already defined, go to stage k + 1. Otherwise, find i of highest priority on List 
1 such that  no index on List 2 of higher priority actually takes as many steps 
oninput m as ~bl. Set ~t,(n) = ~ ( n )  - 1. If  an i is found, remove i from List 1 and 
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place on List 2 with priority k. Go to stage k + 1. However, if a t tempt  to find 
either i (1) requires more than k steps, then go to stage k + 1; or (2) requires 
more than ~t ,  then set 4~t' = max {Or, ,~tl and go to stage k + 1. 

To see that  C~, = C~ t, consider: 
(1) ~bi in C~t but  not in C~t, • 

In this case 

• i(n) _< 4,~(n) a.e. and ~i (n)  > 4~t,(n) i.o. 

The index i can be placed on List 1 at most a finite number of times [only once for 
each n such that  ~ ( n )  > Or(n) ]. Eventually,  each index both on List 1 and List 2 
of higher priority which will ever be removed will be removed. Then i will be removed 
from List 1 unless there always exists a higher priority index j on List 2 which takes 
longer to compute. If such an index always exists, 4~t, cannot dip below ~ ,  and hence 
infinitely often cannot dip below ~ since ~ _< ~j .  If no higher priority index on List 
2 takes longer to compute, then i gets removed from List 1 and is placed on List 2. 
Eventually,  all higher priority indices on List 1 which will ever be removed are re- 
moved, and then 4~t, cannot dip below ,I~. Thus ~t, > ~ a.e.--a contradiction. 

(2) ~bi in C~,,, but  not in C~,. 
In this case 

,I~i(n) < 4~t,(n) a.e. and ,I~i(n) > cht(n) i.o. 

Thus index i is on List 1 for infinitely many steps. Ei ther  i is infinitely often re- 
moved from List 1 (in which case 4w < ~ ( n )  i.o.--a contradiction), or i remains 
on List 1 forevermore. Eventual ly,  all indices on List 1 of priority higher than i 
which will ever be removed are removed. Similarly, any index on List 2 of higher 
priority which will ever be removed will have been removed. Then ~i < ~t forever- 
more (contradicting ~ ~ ~bt i.o. ) since some index on List 2 of higher priority which 
is never removed from List 2 takes more steps. 

To see that  4w is honest, note that  if ~t, (n) is assigned a value because more than 
• t steps are needed, then ~t, (n) = ,I~t (n); otherwise ~t, is independent of 4~t. 

7. Size of Machines  

We conclude the study of computational complexity by establishing some relations 
between the size of algorithms, or machines, and their efficiency. Just  as we ab- 
stracted the notion of complexity of an algorithm, we can abstract the notion of the 
size of an algorithm. What  we have in mind is to capture the notion of how compli- 
cated it is to describe an algorithm. The size of a computer program might be 
measured by the number of statements, and the size of a Turing machine by the 
state-tape symbol product. 

Definition. Let  s be a (recursive) mapping of integers into integers. We say that  s is 
a measure of the size of machines for an admissible enumeration of all partial recur- 
sive functions 4,1, ~b2, ~b3, " -  , provided that  

(1) for each j there exist finitely many indices i such that  s ( i )  = j;  
(2) there exists a recursive function giving the size of each algorithm; and 
(3) there exists a recursive function giving the number of algorithms of each size. 
Consider representing algorithms by strings of symbols from some finite alphabet, 

and let the size of the algorithm be the number of symbols. The first axiom captures 
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the fact that  there are a finite number of strings of symbols of any given length. The 
second axiom corresponds to counting the number of symbols in a string, and the 
third axiom captures the notion that  we can check the format of a string of symbols 
to determine if it represents an algorithm. Thus the number of syntactically correct 
strings of any given length can be computed. The three axioms are equivalent to an 
effective enumeration of algorithms in order of increasing size (among representa- 
tions of the same size, order is unimportant) .  

It is easily shown that  all measures of size are recursively related. 
THEOREM 18. Let s and ~ be two measures of size. There exists a recursive function 

g such that 

for all i. 
PROOF. Let  

where 

g(s(i)) ~ ~(i) and g(~(i)) > s(i) 

g ( m )  = m a x  i s ( i ) ,  ~ ( i ) }  
i ESm 

Sm= {i lei thers(i)  < m o r ~ ( i )  < m}. 

Since Sm is a finite set for each m, and since s and ~ are recursive, g is a recursive 
function. Clearly, 

g(s(i) ) > ~(i) and g(~(i) ) > s(i) 
for all i. 

The reason for considering size of algorithms is to study the economy of various 
formalisms for representing algorithmic processes. In writing computer programs 
for functions which arise in practical situations, one can dispense with conditional 
transfer statements and write a program where the flow of execution is determined by 
a very simple nested loop structure. Furthermore,  the running time does not differ 
much from that  of an arbitrary program. This raises the question as to why we use 
conditional transfers at all. The answer lies in efficiency of representation. As an 
example, compare the size of the representation of a primitive recursive function 
using a primitive recursive schema versus the representation by means of a Turing 
machine which computes the function. Given an arbitrary recursive function f, 
we can exhibit a primitive recursive ¢ such that  the minimum number of symbols in 
any primitive recursive schema for ¢ is larger than f (m),  where m is the number of 
symbols used to describe a certain Turing machine computing ~b. 

To obtain the result, we first prove that  in any infinite sequence of algorithms 
there are inefficient representations. 

THEOREM 19. Let g be a recursive function with infinite range (g enumerates in- 
dices of an infinite sequence of algorithms). Let f be a reeursive function. There exist i 
and j such that 

(1) ¢~ = C g ( i ) ,  

(2) f (s( i ) )  < s(g(j)). 
[Note. The intuitive idea behind the theorem should be transparent.  Since there 
are a finite number of algorithms of any given size, it follows that  in any infinite 
recursively enumerable (r.e.) sequence of algorithms, there is an infinite r.e. se- 
quence where the size of algorithms grows as rapidly as we like. Let  g enumerate the 
rapidly growing subsequence. Given k, 4)g(k)(n) can be computed by a fixed-size 
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program, namely, 

4~(k, n)  = 4~g(k)(n). 

Thus, the size of programs to compute ~bgik) need only grow at the rate needed to 
compute k at the same time the corresponding programs on the r.e. list grow 
very rapidly and the difference in the length of the two representations becomes 
arbitrarily large.] 

PROOF. Since size reduction is measure-independent (i.e. if there is arbitrary 
size reduction in one measure, then there is arbitrary size reduction in all measures), 
we need only prove the theorem for the case where s (i) is the length of the descrip- 
tion of the ith Turing machine. Without loss of generality, assume 

s(g(n + 1)) > f(s(g(n))). 

(Since there exist only a finite number of machines of any size, simply delete ma- 
chines from the sequence determined by g until a large enough machine comes along. ) 
Consider the machine ~i(k) which writes k on its tape, computes g(k), and then 
computes ~g(k) • The size of ~i(k) is a constant plus k (i.e. size of Turing machine com- 
puting g plus size of universal machine to simulate ~b~ plus states to store k). Now 
~bi(k) = ~bo(k) • Increasing k by 1 increases size of i(k) by 1 and g (/c) by f. Thus, for 
sufficiently large k, 

f(s(i(k))) < s(g(k)). 

Let  j = k and i = i (k) to complete the proof. 

As a consequence of Theorem 19, there exists a primitive recursive function whose 
smallest primitive recursive schema is much larger than a general recursive al- 
gorithm for computing the function. Each primitive recursive function has at least 
one smallest primitive recursive definition. The smallest definitions are recursively 
enumerable. (First enumerate the smallest schema. Start  evaluating the function 
computed by the ith schema on input n for larger and larger i and n. Enumerate  a 
schema whenever it is discovered that  it computes a function which differs from all 
functions of smaller schema. ) Let  g enumerate the smallest schema. Let  f (n) = n 2, 
and applying Theorem 19 we get a primitive recursive function ~b whose smallest 
primitive recursive schema has the square of the number of symbols of some general 
recursive algorithm for ~. Note that  we could have selected any r.e. class of recursive 
functions instead of the primitive recursive functions and obtained the same result. 

8. Historical Notes 

One can detect interest in the difficulty of computations in much of mathematics 
where we can find algorithms defined, analyzed, and compared for their efficiency. 
On the other hand, hardly any of this mathematics constituted a systematic attempt 
to develop a theory of computational complexity which would study the quantita- 
tive problems in computing. The complexity problems were originally not well 
defined, but  even during the rapid development of constructive mathematics in the 
first part  of this century, they were not viewed as a separate problem area. During 
this time, several classifications of subclasses of recursive functions were defined and 
investigated, but  the main interest was in uniformly constructing larger and larger 
subsets of the recursive functions rather than in studying the intrinsic computational 
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complexity of functions. The emergence of electronic computing and the general 
developments of computer science no doubt emphasized the need for a quantitative 
theory of computing, and recursive function theory provided the formalism and 
initial models for this theory. 

The first attempt to give an axiomatic approach to the measuring of computa- 
tional difficulty was made by Rabin [2, 3], who axiomatized the concept of "measures 
on proofs and length of computation function," and derived some initial results about 
these measures. The first systematic investigation of a specific computational com- 
plexity measure and the study of the corresponding complexity classes is due to 
Hartmanis and Stearns [4, 5], who also gave the name "computational complexity" 
to this new area of research. Cobham's conference paper [6] discussed the importance 
of the study of quantitative aspects of computing and gave some further results. 
The work of Rabin, Hartmanis and Stearns, and Cobham clearly stated the im- 
portance of this new area of research, derived enough results to be considered a 
"call to arms" for computational complexity, and named the field as well. 

The general axiomatic approach to computational complexity used in this over- 
view was formulated by Blum [7] and was influenced by Rabin's work. Blum also 
derived most of the results described in Section 2 of this paper, some of which give 
a general formulation of the results derived by Hartmanis and Stearns for Turing 
machine computation times. The speed-up theorem is also due to Blum, although 
the proof of this result given in Section 3 is new. It differs from the original proof 
in that no use is made of the recursion theorem which (we believe) obscured the 
simplicity of the central diagonal process. The observation expressed in Theorem 
6 is new and is used further in Section 5. The gap theorem was discovered inde- 
pendently by Trakhtenbrot [8] and Borodin [9] and it shows that Theorem 6 cannot 
be improved. The gap theorem thus gives a beautiful justification for Blum's use 
of measured sets of functions which enter Theorems 8 and 9. The recursive enumer- 
ability of complexity classes was studied by Hartmanis and Stearns [5] and Young 
[10]. The proof that in some measures there exist complexity classes which are not 
recursively enumerable is due to F. Lewis [11] and to Robertson and Landweber 
[12]. 

The material about simulation and parallelism in Section 5 is new, and the 
results about time-bounded and tape-bounded complexity classes in that section 
are due to Hennie and Steams [1], Hartmanis and Stearns [5], Hartmanis [13], 
and Stearns, Hartmanis, and Lewis [14]. 

The union theorem and the naming theorem in Section 6 are due to McCreight 
and Meyer [15]. The result that the naming theorem still leaves arbitrarily large 
downward gaps is due to Constable [16]. The material on the size of machines was 
derived by Blum [17]. 

The development of computational complexity has further been influenced by 
many papers and results which have not been explicitly used in this paper. Some of 
them are listed in our short bibliography. 

For a complete and up-to-date bibliography, see "A Bibliography on Computa- 
tional Complexity" by Irland and Fischer, listed in the Bibliography. 

REFERENCES 

1. HENNIE, F. C., AND STEARNS, R. E. 
J. ACM 13 (1966), 533-546. 

Two- tape  s imula t ion  of mul t i - t ape  Tur ing  m a c h i n e s .  

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971 



474 Z. HARTMANIS AND J. E. HOPCROFT 

2. I~ABIN, M. O. Speed of computation of functions and classification of recursive sets. 
Proc. Third Conven. of Scientific Societies, Israel, 1-2, 1959. 

3. RABIN, M.O.  Degrees of difficulty of computing a function and a partial ordering of 
recursive sets. Tech. Rep. 2, Hebrew U., Jerusalem, Israel, 1960. 

4. HARTMANIS, J., AND STEARNS, R . E .  Computational complexity of recursive sequences. 
IEEE Proc. Fifth Ann. Symp. on Switching Circuit Theory and Logical Design, 1964, 
pp. 82-90. 

5. HARTMANIS, J., AND STEARNS, R. E. On the computational complexity of algorithms. 
Trans. Amer. Math. Soc. 117 (1965), 285--306. 

6. COBHAM, A. The intrinsic computational difficulty of functions. Proc. 1964 Internat. 
Cong. for Logic, Methodology, and Philosophy of Science. Y. Bar-Hillel, Ed. North-Hol- 
land Pub. Co., Amsterdam, 1964, pp. 24-30. 

7. BLUM, M. A machine-independent theory of the complexity of recursive functions. 
J. ACM 1~ (1967), 322--336. 

8. TRAKHTENBROT, B. A. Complexity of algorithms and computations. Course Notes, 
Novosibirsk U., Novosibirsk, Russia, 1967. 

9. BORODIN, A. Complexity classes of recursive functions and the existence of complexity 
gaps. Conf. Rec. ACM Symp. on Theory of Computing, 1969, pp. 67-78. 

10. YOUNG, P .R .  Toward a theory of enumerations. J. ACM 16 (1969), 328-348. 
11. LEWIS, F. D. Unsolvability considerations in computational complexity. Conf. Rec. 

Second Ann. ACM Symp. on Theory of Computing, 1970, pp. 22-30. 
12. LANDWEBER, H. H., AND ROBERTSON, E .L .  Recursive properties of abstract complexity 

classes. Conf. Rec. Second Ann. ACM Syrup. on Theory of Computing, 1970, pp. 31-36. 
13. HARTMANIS, J. Computational complexity of one-tape Turing machine computations. 

J. ACM 15 (1968), 325-339. 
14. STEARNS, R. E., HARTMANIS, J. AND LEWIS P. M. II. Hierarchies of memory limited 

computations. 1965 IEEE Conf. Rec. on Switching Circuit Theory and Logical Design, 
pp. 179-190. 

15. McCREIGHT, E. M., AND MEYER A.R. Classes of computable functions defined by bounds 
on computation: preliminary report. Conf. Rec. ACM Symp. on Theory of Computing, 
1969, pp. 79-88. 

16. CONSTABLE, R. L. Upward and downward diagonalization over axiomatic complexity 
classes. Tech. Rep. 69-32, Dep. of Computer Science, Cornell U., Ithaca, N. Y., 1969. 

17. BLUM, M. On the size of machines. Inf. Contr. 11 (1967), 257-265. 

BIBLIOGRAPHY 
AXT, P. Enumeration and the Grzegorczyk hierarchy. Z. Math. Logik Grundlagen Math. 9 

(1963), 53-65. 
BECVAR, J. Real-time and complexity problems in automata theory. Kybernetika 1 (1965), 

475--497. 
BLUM, N. On effective procedures for speeding up algorithms. Conf. Rec. ACM Symp. on 

Theory of Computing, 1969, pp. 43-53. 
BORODIN, A., CONSTABLE, R. L., AND HOPCROFT, J .E .  Dense and nondense families of com- 

plexity classes. IEEE Conf. Rec. Tenth Ann. Symp. on Switching and Automata Theory, 
1969, pp. 7-19. 

COBHAM, A. On the Hartmanis-Stearns problem for a class of tag machines. IEEE Conf. 
Rec. Ninth Ann. Symp. on Switching and Automata Theory, 1968, pp. 51-60. 

CONSTABLE, R.L .  The operator gap. IEEE Conf. Rec. Tenth Ann. Symp. on Switching and 
Automata Theory, 1969, pp. 20-26. 

FISCHER, P. C. Multi-tape and infinite-state automata--a survey. Comm. ACM 8 (1965), 
799--805. 

FISCHER, P. C. The reduction of tape reversals for off-line one-tape Turing machines," 
J. Computer Systems Sciences 2 (1968), 136-147. 

FISCHER, P. C., HARTMANIS J. AND BLUM M. Tape reversal complexity hierarchies. IEEE 
Conf. Rec. Ninth Ann. Syrup. on Switching and Automata Theory, 1968, pp. 373-382. 

GRZEGORCZYK, A. Some classes of recursive functions. Rozprawy Mat. $, Warsaw, (1953), 1-45. 
HARTMANIS, J. Tape reversal bounded Turing machine computations. J. Computer Systems 

Sciences 2 (1968), 117-135. 

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971 



Overview of  the Theory of  Computational Complexi ty  475 

HENNIE, F. C. One-tape, off-line Turing machine computations. Inf. Conlr. 8 (1965), 553- 
578. 

HENNIE, F. C. Crossing sequences and off-line Turing machine computations. 1965 IEEE 
Conf. Rec. on Switching Circuit Theory and Logical Design, pp. 168-172. 

HOPCROFT, J. E., AND ULLMAN, J .D.  Relations between time and tape complexities. J. ACM 
15 (1958), 414-427. 

HOPCROFT, J. E., AND ULLMAN, J. D. Some results on tape bounded Turing machines," 
J. ACM 16 (1969), 168--177. 

IRLAND, M. I., AND FISCHER, P .C .  A bibliography on computational complexity. Res. Rep. 
CSRR 2028, U. of Waterloo, Ontario, Canada, Oct. 1970. 

KARP, R.M.  Some bounds on the storage requirements of sequential machines and Turing 
machines. J.  ACM 1~ (1967), 478--489. 

LEwis, P. M. II, STEARNS, R. E., AND HARTMANIS, J. Memory bounds for recognition of con- 
text-free and context-sensitive languages. 1965 IEEE Conf. Rec. on Switching Circuit 

Theory and Logical Design, pp. 191-202. 
MCCREIGHT, E. M. Classes of computable functions defined by bounds on computation. 

Doctoral Th., Computer Sci. Dep., Carnegie-Mellon U., Pittsburgh, Pa., 1969. 
MEYER, A. R., AND RITCHIE, D.M. The complexity of loop programs. Proc. ACM 22nd Nat. 

Conf., 1967, Psychonetics, Narberth, Pa., pp. 465-469. 
RABIN, M.O. Real time computation. Israel J. Math. I (1964), 203-211. 
RITCHIE, R.W.  Classes of predictably computable functions. Trans. Amer. Math. Soc. 106 

(1963), 139-173. 
SAVlTCH, W. J. Deterministic simulation of non-deterministic Turing machines (detailed 

abstract). Conf. Rec. ACM Symp. on Theory of Computing, 1969, pp. 247-248. 
TRAKHTENBROT, B.A.  Turing computations with logorithmie delay. Algebra i Logika 3, ~, 

in Russian, (1964), 33-48. 
YAMADA, H. Real-time computation and recursive functions not real-time computable," 

IRE Trans. Elec. Comp. EC-11 (1962), 753-760. 

RECEIVED JULY, 1970; REVISED DECEMBER, 1970 

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971 


