
An Overview of the Theory of

Computational Complexity

J. HARTMANIS AND J. E. HOPCROFT

Cornell University,* Ithaca, New York

ABSTRACT. The purpose of this paper is to outline the theory of computational complexity
which has emerged as a comprehensive theory during the last decade. This theory is concerned
with the quantitative aspects of computations and its central theme is the measuring of the
difficulty of computing functions. The paper concentrates on the study of computational com-
plexity measures defined for all computable functions and makes no attempt to survey the
whole field exhaustively nor to present the material in historical order. Rather it presents the
basic concepts, results, and techniques of computational complexity from a new point of view
from which the ideas are more easily understood and fit together as a coherent whole.

K E Y W O R D S A N D P H R A S E S : computational complexity, complexity axioms, complexity meas-
ures, computation speed, time-bounds, tape-bounds, speed-up, Turing machines, diagonaliza-
tion, length of programs

CR C A T E G O R I E S : 5.20, 5.22, 5.23, 5.24

1. Introduction

I t is clear that a viable theory of computation must deal realistically with the
quantitative aspects of computing and must develop a general theory which studies
the properties of possible measures of the difficulty of computing functions. Such
a theory must go beyond the classification of functions as computable and non-
computable, or elementary and primitive reeursive, etc. I t must concern itself with
computational complexity measures which are defined for all possible computations
and which assign a complexity to each computation which terminates. Furthermore,
this theory must eventually reflect some aspects of real computing to justify its
existence by contributing to the general development of computer science. During
the last decade, considerable progress has been made in the development of such a
theory dealing with the complexity of computations. I t is our conviction that by
now this theory is an essential part of the theory of computation, and that in the
future it will be an important theory which will permeate much of the theoretical
work in computer science.

Our purpose in this paper is to outline the recently developed theory of computa-
tional complexity by presenting its central concepts, results, and techniques. The
paper is primarily concerned with the study of computational complexity measures
defined for all computable partial functions and no at tempt is made to survey the
whole field exhaustively nor to present the material in historical order. Rather, we

* Department of Computer Science. This research has been supported in part by National
Science foundation grants GJ-155 and G J-96, and it is based in part on lectures delivered by
the first author at a Regional Conference in the Mathematical Sciences sponsored by the
National Science Foundation and arranged by the Conference Board of the Mathematical
Sciences at the State University of New York at Plattsburg, N. Y., June 23-28, 1969.

Journal of the Associat ion for C o m p u t i n g Machinery, Vol. 18, No. 3, July 1971, pp. 444--475

Overview of the Theory of Computational Complexity 445

concentrate on exhibiting those results and techniques which we feel are important
and present them from a point of view from which they are most easily understood.
In a way, this paper contains what we believe every computer scientist (or at least
those working in the theory of computation) should know about computational
complexity. On the other hand, he who wishes to do further research in this area may
have to do considerably more reading. In particular, he should study the results
about specific complexity measures and relations between different measures which
have motivated much of the general approach and which remain a source for ideas
and counterexamples.

It should be emphasized that this overview does not include some very interesting
recent work which deals with establishing lower and upper bounds on the difficulty
of computing specific functions. This is an important area of research in computa-
tional complexity and may be of considerable practical importance ; at the same time
it is our conviction that this area is developing very rapidly and that it is premature
to try to survey it now.

In the first part of the paper the definition of computational complexity measures
is motivated and several examples are given. After that, some basic properties are
derived which hold for all complexity measures. I t is shown, for example, that in
every complexity measure there exist arbitrarily complex zero-one functions and
that there is no recursive relation between the size of a function and its complexity.
On the other hand, it is shown that any two complexity measures bound each other
recursively. In Section 3 we give a new proof of the rather surprising result which
asserts that in any measure there exist functions whose computation can be ar-
bitrarily sped up by choosing more and more efficient algorithms. This is later
shown not to be true for every recursive function. Our proof is based on a direct
diagonalization argument and does not rely on the Recursion Theorem which
had to be used in the original proof. This is achieved by observing that the speed-up
theorem is measure-independent (i.e. if it holds in any measure it holds in all meas-
ures) and then proving it directly for the well-understood computational com-
plexity measure of tape-bounded Turing machine computations. In this measure,
the proof loses much of it original difficulty. The speed-up theorem has the strange
implication that no mat ter which two universal computers we select (no mat ter
how much faster and more powerful one of the machines is), functions exist which
cannot be computed any faster on the more powerful machine. This is so because for
any algorithm which we use to compute such a function on the more powerful
machine another algorithm exists which is so fast tha t even on the slow machine
it runs faster than the ot~her algorithm on the faster machine.

Since functions exist which have no "best" programs, and thus we cannot classify
functions by their minimal programs, we turn to the study of classes of functions
whose computational complexity is bounded by a recursive function. For this study,
we show for the first time that for any complexity class whose complexity is bounded
by a recursive function f, we can uniformly construct a strictly larger class whose
complexity is given by a recursive function of the complexity of f (i.e. the running
time of f) . The next result, the gap theorem, asserts that this is the best possible
uniform result we can obtain by showing that there exist arbitrarily large "gaps"
between the complexity classes. Tha t is, for every recursive function r there exists an
increasing recursive function t such that the class of all functions computable in
the complexity bound t is identical to the class of functions computable in the com-

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

446 J . H A R T M A N I S AND J . E . H O P C R O F T

plexity bound r o t. Thus we cannot always obtain larger complexity classes by
applying a recursive function to the old complexity bound. This result also has the
interesting implication that when we consider a universal computing machine,
then no matter how much we increased the computation speed and no matter how
many new operations we added, there still exist infinitely many recursive complexity
bounds in which the old and the new machine will compute exactly the same func-
tions. That is, within infinitely many complexity bounds, no advantage can be
gained from the additional computing power and speed of the new machine over tile
old machine. This discussion is followed by another surprising result which shows
that the complexity axioms admit complexity measures with complexity classes that
cannot be recursively enumerated. Fortunately, this situation cannot prevail for
large complexity classes, and it is shown that in any measure all sufficiently large
complexity classes are recursively enumerable.

In Section 5 we take a more detailed look at the process of constructing new
complexity classes by means of the diagonal process. We present a new approach
which permits us to break down the "price of diagonalization" over any complexity
class into the "price of simulation" and the "price of parallel computations."
From this general formulation we can read-off the results about complexity classes
for special measures once we know how difficult it is to "simulate" and to "parallel"
two computations in a given measure. This is illustrated by deriving the three
rather different looking results for the complexity classes of tape-bounded Turing
machine computations as well as the results for time-bounded computations for
one-tape and many-tape Turing machine models. In each case the differences in
the structure of the result are traced back to the differences in the difficulty of
"simulation" and "paralleling" computations for the three different complexity
measures.

In Section 6 we look at the problem of"naming" complexity classes. First we prove
the union theorem, which asserts that the union of any recursively enumerable
sequence of increasing complexity classes is again a complexity class. This implies
that many previously studied subclasses of the recursive functions fit in naturally in
many complexity measures. For example, there exists a recursive tape-bound L (n)
such that the class of functions computed by Turing machines whose tape length is
bounded by L (n) consists exactly of the primitive recursive functions. The second
major result of this section, the naming theorem, takes some of the sting out of
the gap theorem, by showing that in any measure there exists a (measured) set
of functions which names all complexity classes without leaving arbitrarily large
upward gaps. Unfortunately, it turns out that this naming of complexity classes
may have arbitrarily large downward gaps. The naming theorem is a rather tech-
nical result and the proof is still quite difficult. The reader may want to skip this
proof and proceed to the next section,

We conclude this overview with a discussion, in Section 7, of the size of algorithms
or machines in order to capture the notion of how complicated it is to describe an
algorithm. We start by giving a formal definition of a size measure and then show
that any two such measures are recursively related. The main result of this section
shows that in any recursively enumerable list of algorithms there are arbitrarily in-
efficient representations. This result is then used to look at the economy of forma-
lisms for representing various algorithms. For example, it is shown that when we
use primitive recursive schema to represent primitive recursive functions, then there

Journal of the Association for ComDuting Machinery, Vol. 18, No. 3, Ju ly 1971

Overview of the Theory of Computational Complexity 447

are large inefficiencies in this description of primitive recursive functions. That is,
even among the shortest programs in this schema we can find programs which can
be shortened by any desired amount by going to a general recursive schema. This
asserts that, though we do not need a "go to" or "if" statement to compute prim-
itive recursive functions, the use of these statements can shorten the length of our
programs drastically and so clarifies their importance in programming languages.

The last section gives a very brief history of the research described in this paper
and tries to indicate who did the original work. We have also included a short
bibliography for possible further reading.

2. Computational Complexity Measures

The theory of computational complexity is concerned with measuring the difficulty
of computations. To do this, we must discuss what is meant by a computational
complexity measure.

In this paper we are concerned with computational complexity measures which
are defined for all possible computations, i.e. for all partial recursive functions map-
ping the integers into the integers. Therefore, to define a complexity measure, we
need an effective way of specifying all possible computations or algorithms (for the
computation of partial recursive functions), and the complexity measure will then
show how many "steps" it takes to evaluate any one of these algorithms on any
specific argument.

For example, our list of algorithms or computing devices could be a standard
enumeration of all one-tape Turing machines (which we know are capable of com-
puting all partial recursive functions), and the complexity measure for a given
machine Mi (or algorithm) working on an argument n could be the number of opera-
tions performed by Mi before halting on input n.

A different complexity measure is obtained when we consider (a recursive enumera-
tion of) all Algol programs and again let the complexity of the ith Algol program on
argument n be defined by the number of instructions executed before the program
halts on input n.

It should be noted that these complexity measures are associated with the al-
gorithms and not directly with the functions they compute. The reason for this is
that in computations we usually deal with algorithms which specify functions, and
for each computable function there are infinitely many algorithms which compute it.
Furthermore, as will be shown later, there exist functions which have no "best"
algorithm, and thus we cannot talk of the complexity of a function as that of its best
algorithm.

From the preceding examples we see that a computational complexity measure
consists of a recursive list of algorithms which compute all partial recursive func-
tions, to each of which is assigned a step-counting function which gives the amount of
resource used by a given algorithm on a specific argument. The assignment of the
step-counting function, furthermore, satisfies some conditions. If our list of al-
gorithms is denoted by 4~1, ~ , ~3, • • • and the corresponding step-counting functions
by ~1, ,I~2, ~3, • • • , then we note that, for our examples, the following two conditions
hold:

(1) the algorithm ~b~(n) is defined if and only if ~i(n) is defined;
(2) for any given number of steps m and any algorithm ~i working on argument

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

448 J . H A R T M A N I S A.ND J . E . H O P C R O F T

n, we can determine (reeursively) whether ~bi(n) halted in m steps, i.e. whether
¢ , (n) = m .

In other words, if the i th Turing machine halts on input n, then the number of
steps it took before halting is well defined. On the other hand, if the i th machine
does not halt on input n, then we cannot determine how complex the computation is
since the measure is not defined. What we can do for each i and n is to determine
whether the i th machine halted on input n in m steps for any given n. Clearly we
achieve this, for our first example, by just performing m steps of the i th computation
on input n and noticing whether the computation halts on the last step.

One may impose additional conditions on the complexity measure to more com-
pletely capture some specific aspect of computational difficulty, but the conditions
we have stated are so natural and basic to any notion of computational complexity
tha t it is now generally accepted that they must hold for any computational com-
plexity measure. The surprising fact is that they are sufficient to prove many in-
teresting results about all complexity measures for which they hold. In a way, the
rest of the paper will illustrate this although we will look at specific measures to
strengthen our intuition and illustrate some special results.

At the same time it should also be observed that more applied computer scientists
may be far more interested in results about the complexity of particular problems in
specific measures. Nevertheless, the approach outlined above is sufficient to start de-
veloping the general theory.

We now make precise the notion of a computational complexity measure. Through-
out this paper we refer to a computable total function as a recursive function, and
we use the word "algori thm" for algorithmic procedure even though the procedure
does not halt for all arguments.

Defini t ion. A computa t ional complexi ty measure ~ is an admissible enumeration
of the partial recursive functions ¢1,4~2, ,~3, • • • to which are associated the partial
recursive step-counting f unc t ions ~ , ~2 , ~3 , • • • such that :

(1) ~bi(n) is defined iff ~ i (n) is defined,

f01 if ~ i (n) # m
(2) M (i, n, m) = if ~i (n) = m is a recursive function.

I t was seen that the number of moves of a Turing machine can be used as a step-
counting function to obtain a computational complexity measure. Similarly, we can
use the number of tape cells scanned by a Turing machine (provided we agree that
if the machine does not halt the number of tape cells scanned is undefined) to define
a measure. In fact, most other natural measures which can be thought of do indeed
satisfy the definition. Given a set of step-counting functions, one can apply any re-
cursive function f (n) , f (n) >_ n, or any reeursive, unbounded, monotonic function
to each step-counting function to obtain a new set of step-counting functions.
Nevertheless, it will be seen that the definition of computational complexity measures
is restrictive enough to eliminate as step-counting functions those functions which
in no real sense measure the complexity of the computation. For the present it is
instructive to consider several examples which do not form complexity measures.

(A) The number of recursions used to define a function in a schema for primitive
recursion cannot be used for step-counting functions since the schema is not capable
of representing all partial recursive functions, and thus we do not have an admissible
enumeration of all algorithms.

Journal of the Association for Comput ing Machinery, Vol. 18, No. 3, Ju ly 1971

Overview of the Theory of Computational Complexity 449

(B) The functions {,I,~(n)} defined by ~ (n) = 0 for each i and n fail to satisfy
condition (1).

(C) The functions { ~ } defined by

(u if ¢ i (n) is defined,
¢~ (n) = ndefined otherwise,

do not satisfy condition (2), since for each i and n, 4~(n) is defined if and only if
M (i, n, 0) = 1 and thus M (i, n, m) cannot be recursive (otherwise we would be
solving the Halting Problem).

Many results are implied by the definition of computational complexity measure.
The first result is that for any measure there exist arbitrarily complex recursive func-
tions. To establish this result, we will show that for any recursive function f there
exists a recursive function 4 with the property that any possible way of computing

requires more than f (n) steps for infinitely many n. To construct 4 we just have
to formalize the procedure (diagonal process) which looks at each index i infinitely
often with increasing n and sets

4 (n) # 4~(n) if ~i(n) _< f (n) .

Notation. We say that i is an index for the function 4 provided 4~ (n) = 4 (n) for
all n.

THEOREM 1. Let 4~ be a computational complexity measure and f any recursive
function. Then there exists a recursive function 4 such that, for any index i for 4,
• i(n) > f (n) for infinitely many n.

PROOF. Let r (n) be a recursive function with the property that for all i, i =
1, 2, 3, .. • , there are infinitely many n such that r (n) = i. Define

f4~(n)(n) + 1 if ~,(~)(n) < f (n) ,
4(n) \0 otherwise.

Since f and r are recursive functions (by the second condition on complexity meas-
ures), we can compute whether

¢,(~) (n) _< f(n)
and thus 4 (n) is a recursive function. Furthermore, i f j is an index for 4, then for the
infinitely many n such that r (n) = j we have that ,I~ (n) > f (n) , as was to be shown.

By using a somewhat more complicated diagonal process, we next derive the
stronger result which asserts tha t for any recursive f there exist recursive functions
whose complexity exceeds f almost everywhere. To establish this result, we just
formalize the statement: "if the complexity ~ (n) of the ith function is less than
] (n) for infinitely many n, then 4 is not the ith function."

THEOREM 2. Let ~ be a complexity measure. Then for any recursive function f there
exists a recursive function ¢ such that for any index i for 4, ~i(n) > f (n) for almost
all n.

P~ooF. Let f be any recursive function. To construct the function 4 such that,
for any index j for 4, '1~i (n) > f (n) for almost all n, we proceed as follows: for each
n we look for the first function, smallest index i, such that ~i (n) _< f (n) and make
¢ (n) different from 4~ (n), provided this has not been done before. More precisely,
let s (n) be the smallest integer less than n such that

¢~(~) (n) _< f(n)

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

4 5 0 J . H A R T M A N I S A N D J . E . H O P C R O F T

and for nora < n i s

• 8(n)(nn) < f(m), with 4~(n)(m) ~ ¢(m).

If no such integer exists, s (n) is undefined. Let

f0 if 4~(,)(n) = 1,
¢(n)

otherwise.

Clearly 4~(n) is a recursive function. Assume qb.(n) _< f (n) for infinitely many n,
and 4~¢ = 4~. Eventually, for some value of n, say no, the smallest integer k, such that
,I~k (n0) < f (n0) and such that, for no m < no, is q~i (m) < f (m) with •k (m) ¢ 4~ (m),
will be j. Thus, by the definition of 4~, 4~ (no) ~ 4~i(h0), a contradiction. Therefore,
for any index i for ¢, q~i(n) > f (n) for almost all n.

COROLLARY. There exist arbitrarily complex 0-1 valued functions in all measures.

By Theorem 2 we see that there are arbitrarily complex bounded functions. From
this we immediately conclude that there can be no recursive relation between func-
tions and their complexities, since such a relation would imply a bound on the com-
plexity of any bounded function.

TI-IEOREM 3. Let • be a computational complexity measure.
(A) Then there does not exist a recursive function k such that for each i

k(n, V,(n)) _> q~,(n)

almost everywhere (a.e.).
(B) There does exist a recursive function h such that for each i

h(n, q~i(n)) > 4~i(n) a.e.

PROOF. Assume that such a k exists. Then the complexity of any zero-one func-
tion 4~i (n) must satisfy

• i(n) < k(n, O) + k(n, 1) a.e.,

contradicting the previous corollary.
To show that the desired function h exists, let

fOi(n) if,I~(n) = m, H (i , n , m) \1 otherwise.

The function H is recursive since we can determine whether ,I~i (n) = m; if it is,
then 4~i (n) is defined and we compute its value; otherwise, the function has value
one. The function h is defined by

h(n, m) = maxH(i , n, m).
i~n

Clearly, if 4~ (n) is defined and i < n, then

h(n, ~,,(n)) > 4~,(n),

which completes the proof.
The second part of this result asserts that we can bound recursively the size of

any computable function by its complexity. Thus we conclude that the "hor-
rendously" fast growing computable functions are "horrendously" complex.

Journal oI the .Association for Computing Machinery, Vol. 18, No, 3, Ju ly 1971

Overview of the Theory of Computational Complexity 451

Although there is no recursive relation between the value of a function and its
complexity, there is a recursive relation between the complexity of an algorithm in
any two measures. In other words, a function which is "easy" to compute in one
measure is "easy" to compute in all measures.

THEOREM 4. Let q, and ~ be complexity measures. There exists a recursive r such
that, for any i,

r(n, 4~(n)) > ~,(n) and r(n, ~ (n)) > ,I,,(n)

for almost all n.
PROOF. Let

r(n, m) = max {q~i(n), ~i(n) I i ~ n

Clearly,

and

and ~i(n) = m or &~(n) = m}.

r(n, ~i(n)) ~ ~ (n)

r(n, ¢,(n)) >_ ¢,(n)

for all n > i. The function r is recursive since there is an effective procedure to de-
termine if either ,I~ (n) or ~i (n) is equal to m. Should either be equal to m, then both
must be defined. Hence the maximum can be effectively computed.

Saying that two measures are recursively related does not mean much from a
practical point of view since the recursive relation may be arbitrarily large. Further-
more, the recursivc relation given by Theorem 4 may not be a tight bound since the
relation given depends on the enumeration. Thus if we are comparing the number of
steps of a single-tape Turing machine to the number of tape cells used, the function r
of Theorem 4 will depend on the order in which we enumerate Turing machines.
However, as a consequence of the theorem, we note that the complexity of any class
of functions which is recursively bounded in one measure (e.g. polynomials, primitive
reeursive functions, etc.) is recursively bounded in every complexity measure.

Before we proceed to the study of more exciting results, we prove a technical lemma
which shows that in any measure when we "combine" computations, the complexity
of the new computation is recursively bounded by the complexity of the component
computations. This lemma is used repeatedly in the study of computational com-
plexity.

LSMMA 1 (Combining Lemma). Let ~ be any measure and c (i, j) a recursive func-
tion such that if ~i (n) and 4~ (n) are defined, then so is 4~c(~.j) (n). Then there exists a
recursive function h such that

• c(~.j) (n) _< h(n, ~i(n), ~ j (n)) a.e.

PROOF. Define

= ~'I~c(id)(n) if ¢ i (n) = m and 4~(n) = l, p (i, j, n, m, l)
otherwise.

This function is recursive, and we obtain the desired h by setting

h (n , m , l) = max p (i , j , n , m , 1).
{ i , j < n I.

J o u r n a l of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

452 J . H A R T M A N I S AND J . E . H O P C R O F T

Clearly, for n >_ i, j we have

h(n, ~ (n) , ~ (n)) > ~°(~,j)(n),

and thus the inequality holds almost everywhere, as was to be shown.

3. Speed-Up Theorem and Applications

We now give a new proof (without invoking the recursion theorem) of the rather
surprising result that there exist functions which have no best algorithms. In fact,
we show that for any recursive function r (n) there exists a recursive function 4 (n)
such that to every index i for 4 there corresponds an index j for 4 with ,I~i(n) >
r (Oj (n)) for sufficiently large n.

For example, if we choose r (n) = 2 n, there exists a recursive function 4 such that
if 4i = 4, then for some other index j of 4 we have

¢i (n) _~ log ¢i (n) a.e.

Furthermore, this process can be repeated, and we conclude that there exists an
index k for 4 such that

• k (n) ~ log log 'I)i (n) a.e.

and this logarithmic speed-up can be i terated arbitrarily often.
Rather than prove the most general case directly, we first establish the result for

a specific well-understood measure by a straightforward diagonalization argument
and then use the fact that all measures are recursively related to obtain the general
theorem. The complexity measure which we will use is based on the amount of tape
used by a one-tape Turing machine. The machines are so modified that they never
cycle on a finite segment of their tape, and thus this measure satisfies the two condi-
tions of our definition. Furthermore, we modify them so that L~ (n) (the number of
tape cells used by the i th Turing machine on input n) is larger than the length of the
description of the ith Turing machine. Finally, we use an enumeration of these
Turing machines with the property that the i th Turing machine has at most i dif-
ferent tape symbols. The advantage of selecting the amount of tape used as our com-
plexity measure stems from the fact that tape can be reused several times for the
different computations which we will carry out in the desired computation of 4.

We say that a recursive function f (n) is tape-constructable if and only if there
exists a one-tape Turing machine which uses exactly f (n) tape cells for input n,
n = 1 , 2 , . - . .

The basic idea of the following proof is quite simple. We construct a function 4,
which cannot be computed quickly by "small" machines, by running a diagonal
process in which the stringency of conditions decreases with the size of the machine.
More explicitly, for a properly chosen function h we formalize the following proce-
dure for the contruction of 4: "if the i th machine computes 4~(n) on fewer than
h(n -- i) tape cells, then 4 is not 4~"; we then show that this diagonal process is
sufficiently simple that for any k we can compute 4 on h (n - k) tape cells by a suf-
ficiently large machine.

LEMMA 2. Let r (n) be any recur sive function. Then there exists a recursive function
4 (n) such that for each i for which 4 i (n) = 4 (n) there exists a j with

4~(n) = 4 (n) and L i (n) > r (L j (n))

for suffwiently large n.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Overview of the Theory of Computational Complexity 453

PROOF. Without loss of generality we can assume that r (n) is a strictly increas-
ing tape-constructable function. [Otherwise replace r (n) by/~ (n), where/" (n) is a
strictly increasing tape-constructable function and/" (n) > r (n) for all n.] Define
h(n) by h(1) = 1, and fo rn > 1 set

h(n) = r (h(n - 1)) -4- 1.

Then, for all n > 1,

h(n) > r (h (n - 1))

and clearly h is tape-constructable since r (k) and r (k) + 1 are tape-constructable
and thus by induction so is h (n).

We will define the function ¢ (nn) so that:
(1) ¢~(n) = ¢ (n) implies that Li (n) > h(n - i) a.e.;
(2) for each k there exists an index j such that Cj (n) = ¢ (n) and Li (n) _<

h(n - k).
This ensures that, given an index i for ¢, there exists an index j for ¢ with

L~(n) > r (L¢(n)) a.e.

To achieve this, select j so that

Li (n) < h(n - i - 1).

Then

L~(n) > h(n - i) > r (h(n - i - 1)) > r (L i (n)) .

Construction of ¢ (n). Set

¢(1) ={0~1(1)-4- 1 i fL l (1) <h(1),otherwise.

If L1 (1) < h (1), cancel the first Turing machine from the list of Turing machines.
Forn = 2, 3, 4 , - . . , s e t

(~ (n) + 1 where i < n is the smallest index not already cancelled such
4,(n) = that L~(n) < h(n -- i) , and cancel index i;

if no such i exists.

Clearly if the ith Turing machine computes ¢, then

L~(n) k h(n -- i) a.e.

since for sufficiently large no, each j which will eventually be cancelled has already
been cancelled, and hence if

for any n > no, then

and hence

L~(n) < h(n -- i)

¢(n) = ¢,(n) +

¢~(n) ~ ¢(n).

Furthermore, for each k there exists a Turing machine j which computes ¢ in

L~(n) _< h(n - k)

Journal of the Association for Computing Machinery, Voh 18, No. 3, Ju ly 1971

454 J . H A R T M A N I S AND J . E. H O P C R O F T

tape cells. Turing machine j operates as follows. For each i, i < k, whichever gets
cancelled, gets cancelled for a value of n < v. For each n < v, j has stored in its
finite control the value of 4~ (n) and simply prints out the appropriate value. For
n > v, j computes the smallest i not already cancelled as follows:

(1) j lays off h (n - k) tape cells;
(2) j has stored in finite control, the values of i cancelled on input n, n < v;
(3) for v < m <_ n, j simulates each Turing machine i, k < i < n, determines

which machine gets cancelled at each value of m < n, and then finds the smallest
uncancellcd i such that

and sets

L i (n) < h (n - i)

q~(n) = ¢ , (n) + 1.

If no i exists, 0 (n) is set equal to zero. The simulations can be carried out in h (n - k)
tape cells since j simulates only machines with indices greater than k and simulates
the machine i only until it exceeds h (n - i) tape cells. Since machine i has at most i
tape symbols, the simulation requires at most

ih (n -- i) < h (n -- k)

tape cells.

Next we consider arbitrary measures and show that a speed-up theorem exists for
all measures.

TI-IEORE~ 5 (Speed-Up Theorem). Let • be a complexity measure and r (n) a re-
cursive function. There exists a recursive function 4~ (n) so that for each i such that
¢hl (n) = ch (n) there exists a j for which

¢ i (n) = ¢~(n) and ,I~i(n) >_ r(, I~(n)) a.e.

PROOF. Without loss of generality, we assume that r (n) is an increasing mono-
tonic function. Since all measures are recursively related, there exists a strictly
monotonic unbounded R such that

Li < R(,I~) and ¢~. < R(L i) a.e.

provided ,I~ and Lj grow faster than n. Set

~(n) = R (r (R (n))) .

Select q~ by Lemma 2 so that for each i such that ~ = O there exists an index j for
¢ with

Li >_ /'(L~) a.e.

Then

But

R (r (~ i)) < R (r (R (L ¢))) _< L~ < R(¢~) a.e.

R (r (~j)) g R ('I~i) a.e.

Journal of the Association for Computing Machinery, "VoL 18, No. 3, July 1971

Overview of the Theory of Computational Complexity 455

and R strictly monotonic implies

r (,I~) _~ ~i a.e.,

as was to be shown.

In the next section we show tha t not all recursive functions can be sped-up, by
proving that in any measure there exists an increasing recursive function h such that
for each sufficiently large running time 4~i there exists a function f with complexity
Oi which cannot be sped-up by the factor h. Tha t is, f is computable in running time
Oi but not in running time ~ if

h o ~j.(n) < ~ i (n) a.e.

Thus in a n y measure many functions have h-best programs.
One should also observe that the speed-up is not effective in tha t the value of v in

the construction of Lemma 2 is not effectively determined. This immediately raises
the questions as to whether there is some other construction and another function f
with an effective speed-up. I f one wishes a small speed-up, say a linear speed-up for
tape-bounded Turing machines, then there is an effective procedure. ("Small" here,
of course, depends on the measure and must be less than the previously mentioned
h.) Large speed-ups, however, can never be effective. Since effectiveness of speed-up
is measure-independent, we consider the amount of tape used by single-tape Turing
machines and show tha t in this measure large speed-ups are not effective. Again the
outlined proof makes use of the fact tha t we can reuse the tape many times for dif-
ferent computations. Let ~b be a function and i l , / 2 , • • • be a list of programs for 4,
with the proper ty tha t if Oj = ~, there exists a k so tha t r (,I,~ k) < ~. a.e. Here r is
reasonably large and we are faced with the following problem if we assume tha t the
list is recursively enumerable.

Consider an algorithm which for input n marks off two tape cells, enumerates as
much of the list i l , / 2 , • • • as will fit on half of the amount of tape marked off, and
then simulates successively (in a dovetail manner) each algorithm ~ 1 , ~ 2 , • " " until
the simulation tries to exceed the tape marked off. I f no algorithm has yet computed

(n), then two more tape cells are marked off and the process is repeated. In this
way, every algorithm O~s on the list is tried eventually and, since the simulation of
~ by our algorithm does not require more than a constant times the amount of tape
used by ~ j , we conclude tha t this algorithm runs in approximately as little space
(almost everywhere) as any algorithm on the list. Hence a program running in con-
siderably less space cannot appear on the list and therefore we have no r-speed-up
for the program we constructed. Thus we cannot recursively enumerate any list of
algorithms for f which contains for any algorithm f an r-faster algorithm.

Since the speed-up theorem applies to all complexity measures, it can be applied
to speed up computer programs. However, in a computer program one usually
wishes to compute a value of a function on a specific input or for some finite range of
inputs, not on all possible inputs. Reducing the asymptot ic running time almost every-
where is not precisely what a practical computer scientist is interested in. However,
the theorem does tell us tha t we cannot classify functions by their complexity since
some functions have no intrinsic minimal complexity. Wha t we shall do instead is to
define complexity classes and s tudy them in the Section 4.

Before proceeding with the s tudy of complexity classes, we will discuss one ap-
plication of the speed-up theorem. Let us consider two different computers, both of

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

456 J . H A R T M A N I S A N D J . E . H O P C R O F T

which can compute all partial recursive functions. One of these computers is assumed
to have a very rich set of operations and, say, it can perform (10!~°~)! operations per
second; the other computer is assumed to have only a few of the operations of the
first machine, and it can perform only one operation every hundred years. We can
now use these two computers and their programs to define two computational com-
plexity measures based on their running time measured in seconds. Furthermore, we
know from Theorem 4 that the running times of these two machines are related by a
recursive function h. Clearly, h will be a very large function indeed. Nevertheless, the
speed-up theorem asserts that if we pick functions which have an r-speed-up with
r > h, we cannot gain any speed advantage by using the faster machine to compute
these functions since for every program which is used on the fast machine there exists
another program computing the same function faster (for large values) on the slow
machine. Note that the conclusion holds only for sufficiently large values of n and
that there is no effective way of finding the program for the slow machine ; neverthe-
less, we know that it exists.

Later we will find a related result, the gap theorem, which asserts that we can
also exhibit an arbitrarily large recursive function such that the set of functions
computed in this time bound is identical for both machines. In this case, as will be
seen, the proof does not rely on the fact that the slow machine is using bet ter pro-
grams.

4. Complexity Classes

In the first part of this paper we postulated two properties which any computational
complexity measure must have, and we then derived several results about complex-
i ty measures utilizing only these postulates. We saw that in any measure there exist
arbitrarily complex computable functions, tha t there cannot exist a recursive rela-
tion between the size of computable functions and their computational complexity,
that any two complexity measures are recursively related (they bound each other
recursively), and finally that there exist functions whose computation can be "sped-
up" arbitrarily.

We now turn to the study of the classes of functions whose computational com-
plexity is bounded by recursive functions. More precisely, for any complexity meas-
ure ~ we define, for any recursive function ~ , the complexity class

C~, = {¢Jl q~.(n) < ~i(n) a.e.I.

Thus C~ or C~ consists of all computable functions whose complexity is bounded
by 4~i almost everywhere.

We consider first the problem of constructing for any given C~ , a new complexity
class which contains some new function not contained in C ~ .

The construction of the new class will be achieved by diagonalizing over the total
functions which are computed in ~i (n) steps. I t should be observed that in our di-
agonMization we should look at each index infinitely often, since the function ~bj is
in C~ provided Cj (n) < ~b~ (n) for sufficiently large n. Thus even if we find that, for
some n, ,I~j (n) > ~b~ (n), we still should check later whether the inequality is not re-
versed and whether we should not set 4~ ~ ~ -

This is done by first selecting any recursive function r with the property that for

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

Overview of the Theory of Computational Complexity 457

all i, r (n) = i for infinitely many n. Then define

let(v) (n) + 1 if ~r(n) (n) ~ ¢i (n),
0 (n) \1 otherwise.

I f0j C C,~, then for a sufficiently large n, ~i(n) < 0i(n) and r(n) = j, which ira-
plies that 0 # 0J by construction. (Note that 0j C C~i does not necessarily imply that
~j _< 0~ a.e., it only implies that there exists an index k for 0i , 0J = Ok, such that
Ok ~ 0~ a.e. Without loss of generality we will assume throughout this paper that
in such situations we have already picked the correct index.) Thus 0~ is not in C~i.
On the other hand, by using the combining lemma, we know that, for some recursive
h and index k for 0,

• k(n) < h[n, 'I~r(n)(n), ,I~i(n)] a.e.

Thus we have obtained the following result.
THEOREM 6. In any measure ,I~ there exists a recursive function H such that for

each total O~ there exists a function f i ,

fi ~ C~ and fi ~ C~n,,~(,)l.

The above formula can be simplified by deleting the first argument of H(n, Oi (n))
for ,I~i (n) > n. We cannot do this in general, since if one of our measures is the
number of tape cells used by an off-line Turing machine and ~ (n) is constant (in
reality the Turing machine is a finite automaton), then H (~ (n)) would be a con-
stant and could not bound, say, the number of steps performed by a Turing machine
whose complexity grows at least linearly with the size of the input,

COROLLARY. In any measure • there exists a recursive function k such that for all
total O~ (n) such that ~ (n) >_ n there exists an f~ (n) such that

fi ~ C,, and fl E Cko¢,.

By a slight modification of the previous proof (by replacing H by an increasing
R), we can obtain a new complexity class which properly contains the old class.

COROLLARY. In any measure ~ there exists a recursive function R such that for all
Oi total

C¢i ~ CR[n,Oi(n)]"
Again, i f we consider su~eiently di~cult recursive functions Oi, that is, ~i(n) _> n,

c then we can drop the n from the above equation and obtain C~ # C~o.~ .
The previous results show that in any complexity measure we can obtain new

complexity classes uniformly in the running time of any recursive 0~ ; that is,

C~ ~ CRo,~.

The proof of this result was quite simple, and we saw that the running time ~ entered
the expression because we had to compute 0~ in order to bound the number of simu-
lation steps of Or(n) (n). If we could bound the size of the running time ,I~ recursively
to the size of the function 0~, we would have a result which would yield new com-
plexity classes uniformly in 0~ instead of in the complexity ~ . On the other hand,
we know that the complexity of the function cannot be recursively bounded by the
size of the function and this leads us to suspect that there is no recursive q such
that C,~ ~ Cq°,~ for all sufficiently large 0~. The next result proves this suspicion,

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

458 Z. H A R T M A N I S A N D J . E . H O P C R O F T

establishing the previous result as the strongest uniform result which we can get
when we consider all total functions.

The gap theorem, which we prove next, can be viewed as an assertion tha t for any
complexity measure the step-counting functions are sparse relative to recursive
functions. The reason for this is tha t the second condition for complexity measures
permits us to decide whether ~ (n) < m for all n, m, and i. This is so s t rongacondi-
tion tha t using it we can construct for every recursive r a recursive t such tha t no
step-counting function falls infinitely often between t and r o t, thus ensuring tha t
whatever can be computed in bound r o t can also be computed in bound t.

THEOREM 7 (Gap Theorem) . In any complexity measure ~ for any recursive func-
tion r, r(n) > n, there exists a recursive monotonically increasing function t such that

C, = C,o~.

PROOF. Let ~1, ~2, ,I~3, • • • be the enumeration of the running times of the com-
plexity measure ,I~. We define the desired t inductively: let

t(1) = 1,

t(n + 1) = t (n) + i n ,
where

m n = min {m I for each i < n either ,I~i(n -4- 1) > r o [t(n) -I- m]

o r ¢ i (n - 4 - 1) < t (n) A-m}.

The last predicate is recursive, and thus we can test it for m = 1, 2, 3, • . . . To
see tha t this procedure will find the desired ran, note tha t there are only a finite num-
ber of ~ (n -4- 1), i < n, and thus there exists an m so tha t

• ,(n + 1) ~ t (n) + m

for all i, 1 < i < n, such tha t ~ (n + 1) is defined; if ~ (n + 1) is not defined, then
clearly

• ~(n + 1) > r o [t(n) + m] for all m.

Thus a desired m exists, and we conclude tha t t (n) is a reeursive function.
To have C~ ~ C~°t we must find a ~¢ such tha t q~¢(n) < r o t(n) a.e. and not

~,¢(n) < t(n) a.e. This is impossible by construction of t since ~¢(n) < r o t(n) a.e.
implies ~. (n) < t (n) a.e. Thus,

C, = Cr°,.

The gap theorem shows tha t there are arbitrarily large gaps among the recursive
functions which contain no running times (infinitely often). The complexity classes
defined by the functions bounding such a gap are identical. This also implies tha t we
cannot have a recursive way of increasing every sufficiently large total function 4~
to r o ~b~ to get a computat ion bound for some computat ion not in C ~ .

At the same time, it is worth recalling tha t there exists a recursive way of increas-
ing the running time ~ of any total function 4~ to get a bound for a computat ion
which is not in C¢~, tha t is, Co~ ~ CRtn.a~(n)l • We shall now use this result to see for
what subclasses of the recursive functions we can recursively increase the complex-
ity bound to obtain new computations.

We first observe tha t for tape-bounded computat ions the running times or tape

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

Overview of the Theory of Computational Complexity 459

bounds realized by Turing machines are computable in their own bounds. More pre-
cisely, there exists a recursive function a such that for every tape bound L~ we have

4~(~)(n) = Li(n) and ~o(~) C CL,.

The function a just produces a new machine from M~ which checks how much tape
M~ used, and then converts the number of tape squares into the proper (say, binary)
output form. Under proper output conventions, the same is true for the time-
bounded computations of multitape Turing machines, which suggests that measures
with self-computable running times deserve special attention.

Definition. A computational complexity measure 4, is said to be proper if there
exists a recursive function a such that for all i,

~,(~) = 4,i and ~,(~) E Cat.

This leads us to our next result.
COROLLARY. In any proper measure 4, there exists a recursive function R such that

for all i,

PROOF. Since ,I~ is 4,~ computable we can replace ¢~ by 4,~ in the second corollary
of Theorem 6.

The previous result can easily be extended to all measures if we note that in any
measure the size of the step-counting functions recursively bound their computa-
tional difficulty.

LEMMA 3. For any measure 4, there exist two recursive functions ~ and r such that,
for all i, 4,,(n) = 4~(i) (n) and r[n, 4,i(n)] > ~,(1) (n) a.e.

PROOF. The fact that for all i, m, and n we can decide whether ~b~(~) (n) = m per-
mits us to give a proof very similar to that of the combining lemma. We set

P (i ' n ' m) = { ~ "(')(n) otherwise,if¢~(~)(n)--m'

and then let

r[n, m] = max p (i, n, m).

It is seen that r gives the required bounding function.

Combining this result with Theorem 6, we get the following theorem.
THEOREM 8. For any measure 4, there exists a recursive function h such that for all i,

C~ ~ Chin.el(n)].

PROOF. We just observe that the result of Lemma 3 substituted in the result of
the second corollary to Theorem 6 yields the desired relation.

When we look back at the last result, we see that the running times can be re-
cursively increased to obtain bounds for new computations. This result relied pri-
marily on the fact that we could enumerate the running times 4,~ and determine
whether ,I)~ (n) = m. We now generalize this observation.

Definition. A set of functions {7~} which can be recursively enumerated and for
which we can decide for all i, m, and n whether 7~(n) = m, is called a measured set
of functions.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

4 6 0 J . HARTMANIS AND J . E. HOPCROFT

Note that the running times of any complexity measure form a measured set and,
furthermore, the property of being a measured set is not dependent on the complex-
ity measure.

The above definition permits us to state a more general result.
THEOREM 9. Let {~1 be a measured set of functions. Then in any complexity

measure (I, there exists a recursive function r such that

We observe that for any measured set there exists a recursive a and h PROOF.
such that

¢~<~) = ~ and ~(i) (n) ~ h[n, 4~(~)(n)] a.e.,

and then invoke the second corollary of Theorem 6.

Next we take a look at the problem of enumerating all the functions in a complex-
i ty class.

We sav that the complexity class C ~ t is recursively enumerable if there exists a re-
cursively enumerable set of indices which contains an index for every function in Ct a
and only indices for functions in Ct a. Note, however, that we do not insist that the
algorithms named in this enumeration run in the bound t; we only require that they
name functions for which there exists some algorithm running in the bound t (almost
everywhere).

I t turns out that the three specific complexity measures discussed in this paper
have recursively enumerable complexity classes. We will show that this is the case in
any complexity measure for sufficiently large complexity classes (bounds). On the
other hand, we will also show that there are complexity measures for which some
complexity classes cannot be recursively enumerated. This is rather surprising, since
it implies that there is no effective way of describing what functions arc contained
in these classes. I t suggests that these complexity measures are rather pathological
and that additional conditions should be imposed on complexity measures to elimi-
nate these cases.

First, we observe that for any recursively enumerable set of recursive functions
we can bound (a.e.) their running times.

LEMMA 4. Let • be any measure and A a recursively enumerable set of total func-
tions. Then there exists a recursive t such that A ._C Ct .

PROOF. Let i~, i2, i3, •. • be a recursive enumeration of A ; then define

t (n) -- max {~ij(n) l j ~ nl.

Clearly, t (n) is recursive and for each j, ,I~i# (n) < t (n) a.e. Thus A c_ Ct.

In our next result we will use the set of functions of finite support

= {¢i I ¢~(n) is total and e l (n) = 0 a.e.}.

The set ff is easily seen to be recursively enumerable, and therefore in any measure
there exists a recursive t such that ff c Ct a. We now show that all complexity
classes which contain C~ are recursively enumerable.

THEOREM 10. Let • be a complexity measure and t such that ~ C Ct ~. Then for each
recursive Cj (n) > t(n), the complexity class C~i is recursively enumerable.

PROOF. Let ¢~ (n) > t(n) and consider the recursively enumerable set of func-

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Overview of the Theory of Computational Complexity 461

tions

with
{4~(i.p,w)[i= 1, 2, 3 , " - a n d p , w = 0 , 1 , 2 , 3 , - . .}

i i (n) if for each k _< p, ~ (k) _< w,
~b~(~,p,~)(n) = and for each k, p < k _< n, ~ (k) < 4~i(k);

otherwise.

Thus 4~(~.p.w) is equal to ~ if the complexity ~i (n) _< ~j(n) for all n > p and for
n _< p, ~ (n) < w; otherwise O~(i,p,w) is of finite support. If

,I)i(n) < ~s(n) a.e.,

then, for some p and w,

and thus every ~ in C~j appears in our enumeration. Furthermore, since all func-
tions of finite support are in C~i, we can conclude that we have only functions from
C ~ . Thus a (i, p, w) gives the desired enumeration.

The following result shows that there exist complexity measures in which "small"
complexity classes cannot be recursively enumerated.

THEORE~I 11. There exist complexity measures ~ and recursive t such that Ct ~ is not
recursively enumerable.

PROOF. Let ~ x , ~ , " " " be a recursive enumeration of the constant functions
such that ~s (n) = j. Define the measure • as follows: for all k ~ is, j = 1, 2, • • • ,
let ~k (n) >_ n, and let

~ i i (n) = { ~ i f M s (j) d o e s n o t h a l t i n n s t e p s , otherwise.

Thus Co consists of all those constant functions 4~i i (n) = j for which the j th Turing
machine M s does not halt on input j . Therefore, if ~bk~, 4,k~, ~bk3, " " " is an enumera-
tion of Co, then ~kx (1), ¢~ (1), ~ (1), . . . is an enumeration of {Jl Ms(j) l does not
halt}. This is a contradiction, since this set is known (and can easily be shown) not
to be recursively enumerable.

It is interesting to observe that this proof relies heavily on the fact that in this
measure a finite change in ~ could create an infinite change in its complexity ,I,~.
If this is not the case, then all complexity classes are recursively enumerable. The
following result captures some of this observation.

COROLLARY. Let • be a measure with the property that ~ = 4~s a.e. implies ~ ~ C~
if and only i f ~ ~ C~. Then all complexity classes of • are recursively enumerable.

The proof of this result is similar to the proof of Theorem 10.

5. Simulation and Parallelism

In this section we take a more detailed look at the diagonalization process over com-
plexity classes and express the complexity of this process in terms of the complexity
of "simulation" and running two computations in "parallel." This approach per-
mits us to gain more insight into this process and to derive easily some results about
specific complexity measures.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

462 J . HARTMANIS AND J . ~ . HOPCROFT

In the previous section we considered the following diagonalization process which
works for any i, provided ~ is a total function, yielding a function not in C~ :

Od{~)(n) = { : r (~) (n)+ l if~r(~)(n) <~(n) ,o the rwi se ,

where r (n) is any computable function with the property that for each i there exist
infinitely many n for which r (n) = i. We now change this process slightly to obtain
the results previously derived for specific measures.

Instead of checking whether the computation of ~b~(n)(n) has used less than
~bi(n) steps--i.e., whether ~{~) (n) < ~bi(n)--we construct a machine (find an al-
gorithm) which computes Cr(~) (n), and then put a bound on how long this algorithm
is allowed to "simulate" ~(~) (n). Thus in the first diagonal process we bounded the
number of steps simulated in the computation of ~b~(/) (n). In the new process we bound
the number of simulation steps used in the computation of ~,(~)(n). More precisely,
let

~ (n) = ,~r(~)(n) + 1
and

¢~D(~)(n)=(:s(n) if ~s(n) < O~(n), otherwise.

Next we express the complexity of the simulation and the shutting off of the simula-
tion, (I'D(j), in terms of the complexity ~r{~) (n) and ,I)~(n).

LEMMA 5. In any measure ~ there exist recursive functions S and P such that

and
S[n, ~r(~)(n)] > ~s(n)

P[n, ,I~,(n)] ~_ ¢D(,)(n)

for all i and almost all n.
PROOF. Let

S [n , m] = { : s (n) if~r(n)(n)=m,otherwise.

To construct P, proceed as in the combining lemma by letting

p (i , n , m) = {:D(~)(n) i f ~ (n) =m,otherwise,

and then let
P[n, m] = max p(i, n, m).

The next result gives a uniform way of constructing new complexity classes.
THEOREM 12. For any measure there exist two recursive functions S and P such

that for all recursive ¢i and 4~i ,

Sin, ¢~i(n)] < O~(n)

implies that there exists a recursive function f such that

f ¢i C~j but f C CP~n.¢,(n)l.

Comment. Intuitively, the result asserts that if the time lost in simulating the

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Overview of the Theory of Computational Complexity 463

Oi bounded computations does not exceed 4~i, that is, S[n, 4~i (n)] < 4)i (n), then we
can diagonalize over these computations in time 4~. Furthermore, the cost to shut
off the simulator after it has used up ~ (n) steps is related to the difficulty of com-
puting 4~ (n), namely ~ (n), and is given by P[n, ,Fi (n)] which describes the difficulty
of attaching the shut-off mechanism (or putting it in "parallel" with the simulation).
Thus the complexity of the diagonal process does not exceed Pin, ~i (n)], and there-
fore there exists a function f C CPi~..~(.)1 such that f ~ Coj.

PROOF. Let S and P be total functions which satisfy Lemma 5, and let S be non-
decreasing in its second variable (i.e. lc > l implies that for all i, S[i, k] > S[i, l]).
Let f (n) = 4~o(~)(n), and note that

Pin, ~,(n)] Z CI'D(,) (n) a.e.;

therefore 4~,(i) (n) C CeI~,ai(~)~ .
To show that 4~D(~)(n) is not in C¢~ consider any ~ in C~ whose complexity is

bounded by 4~, ~ (n) < ~ (n) a.e. By Lemma 5 we know that, for sufficiently large

• ~(n) _< S[n, ~ (~) (n)] .

Furthermore, by construction of r for arbitrarily large n, r (n) = k; therefore 4~ (n)
= ~b~(~) (n) and ~ (n) = ,-I,~(~) (n). Thus for a sufficiently large n,

~,~(n) _< Sin, ~ (n)] ,

and since ~k(n) < ~b~.(n), we see that

Sin, ~k(n)] < Sin, 4~(n)].

But by the hypotheses of the theorem,

and therefore

which implies that

Sin, ,~(n)] < ,~,(n)

• s(n) < ,~(n) ,

4,s (n) = 4'r(n)(n) + 1 = 4'k (n) + 1.

But then 4~k ~ 4'D¢~) • Hence, recalling that f (n) = 4~D(1) (n), we have that f is in
CPEn.~(n)3 and f is not in C~i, as was to be shown.

By a slight modification of the proof of Theorem 12, we obtain our next result.
COROLLARY. In any measure there exist two recursive functions S and P' such that

for all recursive 4~i and 4~ ,

S[n, ~j(n)] < ~i(n) implies that C~ i ~ CP, t~.a,(,)l.

This result establishes a sufficient condition for one complexity class to be properly
contained in another. Unfortunately, again these results are not uniform in ~ but
only uniform in (I)~, and the gap theorem asserts that this is the best we can do.

To strengthen our intuition and grasp of this general approach, we now look at
several specific measures. As will be seen, for specific complexity measures we can
often derive very tight bounds for the simulation time S and for the cost P of putting
two processes in parallel.

The specific measures under consideration are based on Turing machine computa-

Journal of the A~ociation for Computing Machinery, Vol. 18, No. 3, July 1971

464 J . H A R T M A N I S AND J . E . H O P C R O F T

tions. To simplify our reasoning and permit us to derive the results in their original
form, we make some minor modifications in our complexity measures. We will view
the Turing machines as recognizers of input sequences (thus they compute zero-one
functions) and the parameter of the input will be its length l (not the size of the
number represented by the input) .

5.1. TIME-BOUNDED COMPUTATIONS. First we outline the specific measure based
on time-bounded Turing machine computations.

Definition. A set of sequences R is T(1)-acceptable if and only if there exists a
multitape Turing machine which accepts the set R and for inputs of length l uses
no more than T (1) operations. To indicate that we are dealing with multitape Turing
machines, we denote the class of all T-acceptable sets by Cr M.
[It should be observed that the step-counting measure based on the length of the in-
put sequence (over a k-symbol alphabet, k > 2) does not strictly satisfy the com-
plexity axioms because M may hMt on some input of length I and not on some other.
Thus we cannot assign a unique running time based only on the length of the input.
Our definition overcomes this by looking only at CT M for recursive T and insisting
that all inputs of length l are processed in no more than T (1) operations. The purist
can get out of these troubles by restricting the input to a one-symbol alphabet and
representing n by a sequence of n + 1 symbols and defining l = n + 1. Under this
input convention, the following results remain unchanged.]

To utilize our previous result, we must now determine a good simulation bound S
and a good shut-off price P. In simulation, the difficult problem is to simulate ma-
chines with arbitrarily many tapes on a machine with a fixed number of tapes.
Fortunately, there exists a clever simulation method which yields a good result [1].
The proof of this result is quite hard, and since it is used only once in this paper, we
do not include it here.

LEMMA 6. There exist two computable functions r (n) and c (n) = C[r (n)] and a
two-tape Turing machine M such that

M (n) = Mr(,~) (n) + 1,

and if Mr(,~) (n) halts in t operations, then M (n) halts in no more than

c(n)t log t + c(n)
operations.

Comments.
(1) For this model there exists a simulation function S such that

Sin, t] < c (n) t log t + c(n) , where c(n) = C[r(n)].

(2) The function r(n) , say for a three-symbol input alphabet {0, 1, a}, can be so
chosen that it depends only on the binary prefix up until the first "a" marker and
that this prefix is interpreted as a very direct encoding of a Turing machine's state
table. Thus for every Mi there exists an x, x ~ (0 + 1)*, such that , for all y C
(0 + 1 + a)*,

r (xay) = i.

This decoding function r has the advantage that whenever Mi is simulated, its state
table description is in the same form and the operations required to start and carry
out a simulation step depends only on the prefix x and not on the length of the whole
input. (For the "purist 's" case, when we use a unary input alphabet we are forced

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Overview of the Theory of Computational Complexity 465

into using more subtle decoding techniques, but with a bit of thought they can be
supplied for tile three models under consideration.)

THEOREM 13. Let T(l) be the running time of some multitape Turing machine.
Then for every total function ¢,

lim .4~(l) log ¢(l) _ 0 implies that C~(z)M ~ Cr(~)M .
~-~ T(l)

PROOF. We outline the proof to explain the limit condition and the use of the
running time. The limit condition implies that, for any c > 0 and for sufficiently
large l,

cO (l) log ~ (1) < T (l).

Thus C~ M _c Cr M, and for some sufficiently large n,

SIn, V(1)] < T(I)

where 1 is the length of n, and n is used to compute 0r(n) (n). But then we can diag-
onalize over all R in C~ M in T (l) operations and, since T (1) is a running time of some
Turing machine M r , we can run M r on separate tapes in parallel with the simulator
and shut off the process when M r halts. Thus Pin, T(1)] = T(I) , and we conclude
that OD(i) C CT M but CD(i) ~ C~ M, as was to be shown (viewing 4~,(i) as the charac-
teristic function of a set of sequences).

5.2. ONE-TAPE TURING MACHINES. Next we look at complexity classes defined
by time-bounded one-tape Turing machines.

Definition. A set of sequences R is T (l)-acceptable by a one-tape Turing machine
if and only if there exists a one-tape Turing machine which accepts R and uses no
more than T(1) operations to process inputs of length l. The class of all T(l)-ac-
ceptable sets is denoted by CT 1.

For one-tape Turing machines, the simulation problem is considerably simpler
than for many-tape machines. As a mat ter of fact, for simple r (n) functions the
simulation can be carried out on a one-tape machine within a constant time of the
machine simulated; tha t is,

S[n, t] _< c(n)t + c(n), where c(n) = C[r(n)].

This is achieved by always keeping a copy of the description of Mr(m) near the place
of the simulation (say on a separate track of the tape). Since the length of the de-
scription is fixed, as is the number of tape symbols Mr(.) can use, we see that each
step of the Mr(n) computation can be simulated in a fixed number of steps of M (in-
cluding moving the Mr(a) description along).

On the other hand, the shutting off of the simulation process after T (1) simulation
operations is more difficult than for the many-tape model (where we just ran the
shut-off counter in parallel on separate tapes). The difficulty comes from the fact
that we have to run two independent computations on the same tape with one head.
One way of doing this is to run the two processes on different tracks of the tape and
move one of them, if necessary, to insure that the "head positions" of the two proc-
esses do not separate. If we do this, then we are interested in making sure that the
computation which we have to move is not too long. This is achieved by choosing
T(l) to be the running time of a one-tape Turing machine using no more than

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

466 J . I-I_ARTMANIS AND J . E . H O P C R O F T

log T (1) tape squares. For such T (l), it can easily be seen that

Pin, T(1)] < T(1) log T(l).

Thus we obtain the corresponding result for one-tape machines.
THEOREM 14. Let T (1) be the running time of a one-tape Turing machine which

computes T (1) on log T (l) tape squares. Then, for any total oh,

lim ¢(l) n ~ ~ = 0 implies that C~ 1 ~ Clrl~r.

Note how the two results differ in structure because for many-tape machines
simulation is expensive and parallelism free, whereas for the one-tape model simula-
tion is cheap and parallelism expensive.

5.3. TAPE-BOUNDED COMPUTATIONS. We conclude by a look at tape-bounded
computations.

Definition. A set of sequences R is L (l)-tape acceptable if and only if there exists
a Turing machine M which accepts R and which uses no more than L (1) tape squares
to process inputs of length 1. The set of all L-tape acceptable sets is denoted by CL r.

For tape-bounded computations, it can easily be shown that simulation costs only
a constant times more, thus

Sin, l] < c(n)l + c(n), where c(n) = C[r(n)].

and parallelism is free; that is,

P[n, i (l)] _< i (1)

(provided L (l) can be computed on L (l) tape). Thus for tape-bounded computa-
tions we get the following result.

TI~EOREM 15. I f L(1) is computable on L(1)-tape, then

lim 4~(l) ~® L ~ = 0 implies that C~ r ~ C~ r.

Thus we see that the structure of this result reflects the fact that simulation is
cheap and parallelism is free for tape-bounded computations.

6. Naming of Complexity Classes

In this section we study two related problems. The first arises naturally when we
look at some well-known subclasses of the recursive functions, like the primitive re-
cursive functions, and try to locate them among the complexity classes of a given
measure. Usually these subclasses of the recursive functions are defined by the struc-
ture of their algorithms, and it is quite reassuring that they fit in naturally among the
complexity classes. We show, in fact, as an application of the union theorem, that
for many complexity measures ~ there exist recursive t such that Ct a is exactly the
set of primitive recursive functions.

The second problem arises when we ask for "good" ways of naming complexity
classes. Recall that the gap theorem asserted that in any measure for any recursive
r there exists a recursive t such that Ct -- Crot. Thus we can construct functions
which "name" the same complexity class but which are as far apart as we wish. This

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Overview of the Theory of Computational Complexity 467

seems to imply tha t we have chosen improper functions to name the complexity
classes. I t turns out tha t this is the case and that we can do much better. We cannot
always name all complexity classes with the step-counting functions of the measure,
but we do show tha t there exists a measured set of functions which names all com-
plexity classes.

First we show that the union of any recursively enumerable hierarchy of complex-
ity classes (sequence of increasing complexity classes) is itself a complexity class. Let
{fi [i = 1, 2, • • • } be a recursivcly enumerable set of functions such that , for each i
and n,

f , (n) < f~+,(n).

I t suffices to show tha t there exists a recursive function which is greater than fi (n)
for each i and almost all n but is infinitely often less than each step-counting func-
tion which is greater than fi (n) for each i and almost all n. Then the complexity
class defined by the function will be U~ Ci~ •

Clearly, the function t (n) = f~ (n) is greater than fl (n) for each i and almost all
n. However, there may exist a ~bs for which

(1) ~s (n) < t (n) for almost all n, and
(2) ~s (n) > f~ (n) for each i and almost all n.

Thus 4~s is in Ct but not in the union of Cyi. The way to avoid this difficulty is to
guess for eachj tha t some f~j majorizes q~s. If we detect tha t for some n, ,I)s(n) > f~j (n),
then we assign a value to t (n) which is less than ,I~ s (n) and guess that some larger f i
majorizes ,I) s (n). I f Cs is in U iCf~, eventually we will find an f~ majorizing ,I~j and t
will be greater than ~j almost everywhere. On the other hand, if ~bj is not in the
union, then t will be less than ,I~ s infinitely often (i.o.) and thus 'bs will not be in Ct.
We formalize this intuitive idea in the proof of the union theorem.

THEOREM 16 (Union Theorem) . Let {f l] i = 1, 2, . . . I be a recursively enumerable
set of recursive functions such that for each i and n, f~ (n) < fi+l (n). Then there exists a
recursive function t (n) such that Ct = [Jl Cir.

PROOF. Construct t such tha t
(1) for each i, t (n) >_ f i (n)a . e .
(2) if for each j , ~ i (n) > L (n) i.o., then t (n) < ,I~(n) i.o.

In the construction of t we will maintain a list of indices i l , / 2 , i~, • • • . The list will
be repeatedly updated, and at the nth step, when we compute t (n), the interpreta-
tion is as follows: is = k means tha t currently we are guessing that fk _> ~s almost
everywhere. To compute t (n) , we check whether all our guesses are correct.
The checking of our guesses proceeds as follows: we s tar t with the smallest k
such that k = i j , and determine whether fk (n) > ,I~j (n) ; if this condition is satis-
fied for all k, then we set t (n) = f~ (n) and enter a new guess tha t f , > ~ a.e.
by setting i~ = n. On the other hand, if one of our guesses is wrong, f~ (n) < ,I~s (n),
then we set t (n) = f~ (n) and change our guess to ~j < f~ a.e. by setting i s = n. In
this case, we also add the new guess in = n and repeat the process for n = n + 1.
This process is summarized more formally below.

Construction of t. Initially, i s is undefined for each j , i.e. the list is empty. Set
n = 1. Go to step n.

Step n. Let k be the smallest integer such that there exists a j for which the j t h
item on the list is k (i.e., is = k) and f~i (n) < ~i (n). I f more than one such j exists,
select the smallest. Define t (n) = fi~ (n) and set is = i~ = n and n = n + 1. Go to

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

468 J . H A R T M A N I S A N D J . E . H O P C R O F T

step n. If no such j exists, define t (n) = f~(n). Set i~ = n and set n = n + 1. Go
to step n.

Proof that Ct = Ui Cy~.
(1) ~g in U~ Ci~ implies that there exists an i such that 4~ in C]~ and therefore

• g _~ f l a .e .

But t > f~ almost everywhere since eventually, for each j, i s will take on a value
greater than i, or i~. is such that fi~ (n) majorizes ,I~ (n). From this point on, t >_ f l .
Therefore 4~g C Ct.

(2) Og C Ct implies tha t ,I~g _< t a.e. and thus there exists anfk such that fk > ~g
a.e., or else infinitely often ig would be the smallest number on the list suchthat
fig < ,I~g and t would infinitely often be less than fi~--a contradiction. But 4~g in C/k
implies that Og in O~ Cs~, as was to be shown.

Consider now the primitive recursive functions and the complexity measure which
counts the steps of a single-tape Turing machine. We claim that g primitive re-
cursive implies that there exists a primitive recursive t such that g is in C~. The reason
for this is that the successor function, the zero function, and the projection function
are in a complexity class determined by a primitive recursive function; the recursive
function bounding the complexity of composition and recursion is primitive recur-
sive, and the class of primitive recursive functions is closed under composition.

We further claim that any complexity class determined by a primitive recursive
function contains only primitive recursive functions. The reason for this is that primi-
tive recursion is sufficient to simulate a Turing machine for a primitive recursive
number of steps.

Note that we need only know that there exists a recursively enumerable sequence
of primitive recursive functions such that every primitive recursive function is
majorized in order to show that there is a time complexity class consisting of pre-
cisely the primitive recursive functions. Let g~, g2, "-" be such a sequence, then
f l , f 2 , " " , where

f~(n) = max {gl(n), g2(n), . . . , gi(n)l + i,

is a sequence satisfying the union theorem. The desired result follows immediately
and we state it as a corollary of the union theorem.

COROLLARY. There exists a recursive function t such that the set of functions com-
putable on a one-tape Turing machine in the time bound t is exactly the set of primitiw
recursive functions. The same result holds for many-tape time-bounded Turing machine~,
as well as for tape-bounded Turing machines.

Note that for any measure which is related by a primitive recursive function t(
the number of steps on a single-tape Turing machine the primitive recursive func
tions form a complexity class. Another interesting observation is that the complexit)
class consisting of precisely the primitive recursive functions cannot be named by
primitive recursive function. If it were named by a primitive recursive t (n), ther
t (n) would lie in some level of the Grzegorczyk hierarchy and thus Ct would not con
tain higher levels. This suggests that the function naming the complexity class i~
very complicated.

Furthermore, we saw from the gap theorem that the same complexity class cat
be named by radically different functions. Namely, in any measure for any recursiw
function r we can construct a recursive function t such that Ct = C,°t. In all thes~

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

Overview of the Theory of Computational Complexity 469

cases, the functions turn out to be very complicated in that their complexity differs
widely from their size. This leads us to the problem of trying to name all complexity
classes with functions which are not too complex.

The above observations lead us to the problem of finding a recursively enumerable
set of functions which name all complexity classes of a measure and which have the
property that their complexity is recursively bounded by their size, i.e. an honest set
of functions. The next result, the naming theorem, assures that this is always possible
in that all complexity classes can be named by a measured set. Our strategy consists
of picking for every recursive ~t a 4~t, in a measured set so that C~t = C~,,. Setting
~t, = max (~t, ~bt) insures that ~t, is honest. However, it may be the case that, for
some i, ~bi is a member of C~,, but not a member of C~,. To resolve this difficulty
~t, can be decreased below 4~i (n) for infinitely many n. The values of n are selected
so that ~t, (n) is also reduced to keep the function honest. In decreasing 4~t, (n) be-
low • ~ (n), we must ensure that 4w does not infinitely often dip below some ~# which
is almost everywhere less than ~t. Otherwise, 4~j is a member of C~, but not a mem-
ber of C~,,. The next theorem is proved by formalizing the above ideas.

THEOREM 17 (Naming Theorem). For each measure ~ there exists a measured set
naming every complexity class.

PROOF. We must show that there exists an r (n) such that for each ~bt we can
construct Ct, with

(1) r(n, ¢~t,(n)) ~_ ~t , (n) a.e., and
(2) C~ = C,~, (i.e., ~ < 4~t a.e. ¢=~ ,I~ < ~bt, a.e.)
Two lists are used in the construction of ~ , . List 1 contains functions ¢~ for which

we discover there exists an n such that

~t(n) < ~ , (n) _< Vt,(n).

The function 4~ is removed from this list when we assign

¢ht, (m) < ~,(m)

for some m. At stage k, List 2 will contain each 4~, J _< k, which is not on List 1, and
thus will contain each 4~' for which

and for which we set

in removing some i from List 1.

• i (m) < ~t(m)

~,,, (m) < ~ (m)

For k = 1, 2, 3, • • • , perform the following computation. Place k on List 2 with
priority k (priority 1 will be highest, 2 next, and so on.)

Test to determine if ~ (n) > Ct (n). For each i _< k and each n < k such that
~t (n) < i, compute 4~t (n) unless it was computed for a smaller value of k. Place i
on List 1 if not already on List 1, and assign priority i (remove from List 2 if on
List 2) if ~ (n) > ~t (n).

Try to Jorce ¢ht' below some i with high priority index on List 1. Let a (k) < k
be a function which takes on each integer infinitely often. Let m = a (k). If 4~t' (m)
is already defined, go to stage k + 1. Otherwise, find i of highest priority on List
1 such that no index on List 2 of higher priority actually takes as many steps
oninput m as ~bl. Set ~t,(n) = ~ (n) - 1. If an i is found, remove i from List 1 and

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

470 J . H A R T M A N I S A N D J . E . H O P C R O F T

place on List 2 with priority k. Go to stage k + 1. However, if a t tempt to find
either i (1) requires more than k steps, then go to stage k + 1; or (2) requires
more than ~t , then set 4~t' = max {Or, ,~tl and go to stage k + 1.

To see that C~, = C~ t, consider:
(1) ~bi in C~t but not in C~t, •

In this case

• i(n) _< 4,~(n) a.e. and ~i (n) > 4~t,(n) i.o.

The index i can be placed on List 1 at most a finite number of times [only once for
each n such that ~ (n) > Or(n)]. Eventually, each index both on List 1 and List 2
of higher priority which will ever be removed will be removed. Then i will be removed
from List 1 unless there always exists a higher priority index j on List 2 which takes
longer to compute. If such an index always exists, 4~t, cannot dip below ~ , and hence
infinitely often cannot dip below ~ since ~ _< ~j . If no higher priority index on List
2 takes longer to compute, then i gets removed from List 1 and is placed on List 2.
Eventually, all higher priority indices on List 1 which will ever be removed are re-
moved, and then 4~t, cannot dip below ,I~. Thus ~t, > ~ a.e.--a contradiction.

(2) ~bi in C~,,, but not in C~,.
In this case

,I~i(n) < 4~t,(n) a.e. and ,I~i(n) > cht(n) i.o.

Thus index i is on List 1 for infinitely many steps. Ei ther i is infinitely often re-
moved from List 1 (in which case 4w < ~ (n) i.o.--a contradiction), or i remains
on List 1 forevermore. Eventual ly, all indices on List 1 of priority higher than i
which will ever be removed are removed. Similarly, any index on List 2 of higher
priority which will ever be removed will have been removed. Then ~i < ~t forever-
more (contradicting ~ ~ ~bt i.o.) since some index on List 2 of higher priority which
is never removed from List 2 takes more steps.

To see that 4w is honest, note that if ~t, (n) is assigned a value because more than
• t steps are needed, then ~t, (n) = ,I~t (n); otherwise ~t, is independent of 4~t.

7. Size of Machines

We conclude the study of computational complexity by establishing some relations
between the size of algorithms, or machines, and their efficiency. Just as we ab-
stracted the notion of complexity of an algorithm, we can abstract the notion of the
size of an algorithm. What we have in mind is to capture the notion of how compli-
cated it is to describe an algorithm. The size of a computer program might be
measured by the number of statements, and the size of a Turing machine by the
state-tape symbol product.

Definition. Let s be a (recursive) mapping of integers into integers. We say that s is
a measure of the size of machines for an admissible enumeration of all partial recur-
sive functions 4,1, ~b2, ~b3, " - , provided that

(1) for each j there exist finitely many indices i such that s (i) = j;
(2) there exists a recursive function giving the size of each algorithm; and
(3) there exists a recursive function giving the number of algorithms of each size.
Consider representing algorithms by strings of symbols from some finite alphabet,

and let the size of the algorithm be the number of symbols. The first axiom captures

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Overview of the Theory of Computational Complexity 471

the fact that there are a finite number of strings of symbols of any given length. The
second axiom corresponds to counting the number of symbols in a string, and the
third axiom captures the notion that we can check the format of a string of symbols
to determine if it represents an algorithm. Thus the number of syntactically correct
strings of any given length can be computed. The three axioms are equivalent to an
effective enumeration of algorithms in order of increasing size (among representa-
tions of the same size, order is unimportant) .

It is easily shown that all measures of size are recursively related.
THEOREM 18. Let s and ~ be two measures of size. There exists a recursive function

g such that

for all i.
PROOF. Let

where

g(s(i)) ~ ~(i) and g(~(i)) > s(i)

g (m) = m a x i s (i) , ~ (i) }
i ESm

Sm= {i lei thers(i) < m o r ~ (i) < m}.

Since Sm is a finite set for each m, and since s and ~ are recursive, g is a recursive
function. Clearly,

g(s(i)) > ~(i) and g(~(i)) > s(i)
for all i.

The reason for considering size of algorithms is to study the economy of various
formalisms for representing algorithmic processes. In writing computer programs
for functions which arise in practical situations, one can dispense with conditional
transfer statements and write a program where the flow of execution is determined by
a very simple nested loop structure. Furthermore, the running time does not differ
much from that of an arbitrary program. This raises the question as to why we use
conditional transfers at all. The answer lies in efficiency of representation. As an
example, compare the size of the representation of a primitive recursive function
using a primitive recursive schema versus the representation by means of a Turing
machine which computes the function. Given an arbitrary recursive function f,
we can exhibit a primitive recursive ¢ such that the minimum number of symbols in
any primitive recursive schema for ¢ is larger than f (m), where m is the number of
symbols used to describe a certain Turing machine computing ~b.

To obtain the result, we first prove that in any infinite sequence of algorithms
there are inefficient representations.

THEOREM 19. Let g be a recursive function with infinite range (g enumerates in-
dices of an infinite sequence of algorithms). Let f be a reeursive function. There exist i
and j such that

(1) ¢~ = C g (i) ,

(2) f (s(i)) < s(g(j)).
[Note. The intuitive idea behind the theorem should be transparent. Since there
are a finite number of algorithms of any given size, it follows that in any infinite
recursively enumerable (r.e.) sequence of algorithms, there is an infinite r.e. se-
quence where the size of algorithms grows as rapidly as we like. Let g enumerate the
rapidly growing subsequence. Given k, 4)g(k)(n) can be computed by a fixed-size

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

472 J . H A R T M A N I S A N D J . E . H O P C R O F T

program, namely,

4~(k, n) = 4~g(k)(n).

Thus, the size of programs to compute ~bgik) need only grow at the rate needed to
compute k at the same time the corresponding programs on the r.e. list grow
very rapidly and the difference in the length of the two representations becomes
arbitrarily large.]

PROOF. Since size reduction is measure-independent (i.e. if there is arbitrary
size reduction in one measure, then there is arbitrary size reduction in all measures),
we need only prove the theorem for the case where s (i) is the length of the descrip-
tion of the ith Turing machine. Without loss of generality, assume

s(g(n + 1)) > f(s(g(n))).

(Since there exist only a finite number of machines of any size, simply delete ma-
chines from the sequence determined by g until a large enough machine comes along.)
Consider the machine ~i(k) which writes k on its tape, computes g(k), and then
computes ~g(k) • The size of ~i(k) is a constant plus k (i.e. size of Turing machine com-
puting g plus size of universal machine to simulate ~b~ plus states to store k). Now
~bi(k) = ~bo(k) • Increasing k by 1 increases size of i(k) by 1 and g (/c) by f. Thus, for
sufficiently large k,

f(s(i(k))) < s(g(k)).

Let j = k and i = i (k) to complete the proof.

As a consequence of Theorem 19, there exists a primitive recursive function whose
smallest primitive recursive schema is much larger than a general recursive al-
gorithm for computing the function. Each primitive recursive function has at least
one smallest primitive recursive definition. The smallest definitions are recursively
enumerable. (First enumerate the smallest schema. Start evaluating the function
computed by the ith schema on input n for larger and larger i and n. Enumerate a
schema whenever it is discovered that it computes a function which differs from all
functions of smaller schema.) Let g enumerate the smallest schema. Let f (n) = n 2,
and applying Theorem 19 we get a primitive recursive function ~b whose smallest
primitive recursive schema has the square of the number of symbols of some general
recursive algorithm for ~. Note that we could have selected any r.e. class of recursive
functions instead of the primitive recursive functions and obtained the same result.

8. Historical Notes

One can detect interest in the difficulty of computations in much of mathematics
where we can find algorithms defined, analyzed, and compared for their efficiency.
On the other hand, hardly any of this mathematics constituted a systematic attempt
to develop a theory of computational complexity which would study the quantita-
tive problems in computing. The complexity problems were originally not well
defined, but even during the rapid development of constructive mathematics in the
first part of this century, they were not viewed as a separate problem area. During
this time, several classifications of subclasses of recursive functions were defined and
investigated, but the main interest was in uniformly constructing larger and larger
subsets of the recursive functions rather than in studying the intrinsic computational

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju|y 1971

Overview of the Theory of Computational Complexity 473

complexity of functions. The emergence of electronic computing and the general
developments of computer science no doubt emphasized the need for a quantitative
theory of computing, and recursive function theory provided the formalism and
initial models for this theory.

The first attempt to give an axiomatic approach to the measuring of computa-
tional difficulty was made by Rabin [2, 3], who axiomatized the concept of "measures
on proofs and length of computation function," and derived some initial results about
these measures. The first systematic investigation of a specific computational com-
plexity measure and the study of the corresponding complexity classes is due to
Hartmanis and Stearns [4, 5], who also gave the name "computational complexity"
to this new area of research. Cobham's conference paper [6] discussed the importance
of the study of quantitative aspects of computing and gave some further results.
The work of Rabin, Hartmanis and Stearns, and Cobham clearly stated the im-
portance of this new area of research, derived enough results to be considered a
"call to arms" for computational complexity, and named the field as well.

The general axiomatic approach to computational complexity used in this over-
view was formulated by Blum [7] and was influenced by Rabin's work. Blum also
derived most of the results described in Section 2 of this paper, some of which give
a general formulation of the results derived by Hartmanis and Stearns for Turing
machine computation times. The speed-up theorem is also due to Blum, although
the proof of this result given in Section 3 is new. It differs from the original proof
in that no use is made of the recursion theorem which (we believe) obscured the
simplicity of the central diagonal process. The observation expressed in Theorem
6 is new and is used further in Section 5. The gap theorem was discovered inde-
pendently by Trakhtenbrot [8] and Borodin [9] and it shows that Theorem 6 cannot
be improved. The gap theorem thus gives a beautiful justification for Blum's use
of measured sets of functions which enter Theorems 8 and 9. The recursive enumer-
ability of complexity classes was studied by Hartmanis and Stearns [5] and Young
[10]. The proof that in some measures there exist complexity classes which are not
recursively enumerable is due to F. Lewis [11] and to Robertson and Landweber
[12].

The material about simulation and parallelism in Section 5 is new, and the
results about time-bounded and tape-bounded complexity classes in that section
are due to Hennie and Steams [1], Hartmanis and Stearns [5], Hartmanis [13],
and Stearns, Hartmanis, and Lewis [14].

The union theorem and the naming theorem in Section 6 are due to McCreight
and Meyer [15]. The result that the naming theorem still leaves arbitrarily large
downward gaps is due to Constable [16]. The material on the size of machines was
derived by Blum [17].

The development of computational complexity has further been influenced by
many papers and results which have not been explicitly used in this paper. Some of
them are listed in our short bibliography.

For a complete and up-to-date bibliography, see "A Bibliography on Computa-
tional Complexity" by Irland and Fischer, listed in the Bibliography.

REFERENCES

1. HENNIE, F. C., AND STEARNS, R. E.
J. ACM 13 (1966), 533-546.

Two- tape s imula t ion of mul t i - t ape Tur ing m a c h i n e s .

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

474 Z. HARTMANIS AND J. E. HOPCROFT

2. I~ABIN, M. O. Speed of computation of functions and classification of recursive sets.
Proc. Third Conven. of Scientific Societies, Israel, 1-2, 1959.

3. RABIN, M.O. Degrees of difficulty of computing a function and a partial ordering of
recursive sets. Tech. Rep. 2, Hebrew U., Jerusalem, Israel, 1960.

4. HARTMANIS, J., AND STEARNS, R . E . Computational complexity of recursive sequences.
IEEE Proc. Fifth Ann. Symp. on Switching Circuit Theory and Logical Design, 1964,
pp. 82-90.

5. HARTMANIS, J., AND STEARNS, R. E. On the computational complexity of algorithms.
Trans. Amer. Math. Soc. 117 (1965), 285--306.

6. COBHAM, A. The intrinsic computational difficulty of functions. Proc. 1964 Internat.
Cong. for Logic, Methodology, and Philosophy of Science. Y. Bar-Hillel, Ed. North-Hol-
land Pub. Co., Amsterdam, 1964, pp. 24-30.

7. BLUM, M. A machine-independent theory of the complexity of recursive functions.
J. ACM 1~ (1967), 322--336.

8. TRAKHTENBROT, B. A. Complexity of algorithms and computations. Course Notes,
Novosibirsk U., Novosibirsk, Russia, 1967.

9. BORODIN, A. Complexity classes of recursive functions and the existence of complexity
gaps. Conf. Rec. ACM Symp. on Theory of Computing, 1969, pp. 67-78.

10. YOUNG, P .R . Toward a theory of enumerations. J. ACM 16 (1969), 328-348.
11. LEWIS, F. D. Unsolvability considerations in computational complexity. Conf. Rec.

Second Ann. ACM Symp. on Theory of Computing, 1970, pp. 22-30.
12. LANDWEBER, H. H., AND ROBERTSON, E .L . Recursive properties of abstract complexity

classes. Conf. Rec. Second Ann. ACM Syrup. on Theory of Computing, 1970, pp. 31-36.
13. HARTMANIS, J. Computational complexity of one-tape Turing machine computations.

J. ACM 15 (1968), 325-339.
14. STEARNS, R. E., HARTMANIS, J. AND LEWIS P. M. II. Hierarchies of memory limited

computations. 1965 IEEE Conf. Rec. on Switching Circuit Theory and Logical Design,
pp. 179-190.

15. McCREIGHT, E. M., AND MEYER A.R. Classes of computable functions defined by bounds
on computation: preliminary report. Conf. Rec. ACM Symp. on Theory of Computing,
1969, pp. 79-88.

16. CONSTABLE, R. L. Upward and downward diagonalization over axiomatic complexity
classes. Tech. Rep. 69-32, Dep. of Computer Science, Cornell U., Ithaca, N. Y., 1969.

17. BLUM, M. On the size of machines. Inf. Contr. 11 (1967), 257-265.

BIBLIOGRAPHY
AXT, P. Enumeration and the Grzegorczyk hierarchy. Z. Math. Logik Grundlagen Math. 9

(1963), 53-65.
BECVAR, J. Real-time and complexity problems in automata theory. Kybernetika 1 (1965),

475--497.
BLUM, N. On effective procedures for speeding up algorithms. Conf. Rec. ACM Symp. on

Theory of Computing, 1969, pp. 43-53.
BORODIN, A., CONSTABLE, R. L., AND HOPCROFT, J .E . Dense and nondense families of com-

plexity classes. IEEE Conf. Rec. Tenth Ann. Symp. on Switching and Automata Theory,
1969, pp. 7-19.

COBHAM, A. On the Hartmanis-Stearns problem for a class of tag machines. IEEE Conf.
Rec. Ninth Ann. Symp. on Switching and Automata Theory, 1968, pp. 51-60.

CONSTABLE, R.L . The operator gap. IEEE Conf. Rec. Tenth Ann. Symp. on Switching and
Automata Theory, 1969, pp. 20-26.

FISCHER, P. C. Multi-tape and infinite-state automata--a survey. Comm. ACM 8 (1965),
799--805.

FISCHER, P. C. The reduction of tape reversals for off-line one-tape Turing machines,"
J. Computer Systems Sciences 2 (1968), 136-147.

FISCHER, P. C., HARTMANIS J. AND BLUM M. Tape reversal complexity hierarchies. IEEE
Conf. Rec. Ninth Ann. Syrup. on Switching and Automata Theory, 1968, pp. 373-382.

GRZEGORCZYK, A. Some classes of recursive functions. Rozprawy Mat. $, Warsaw, (1953), 1-45.
HARTMANIS, J. Tape reversal bounded Turing machine computations. J. Computer Systems

Sciences 2 (1968), 117-135.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Overview of the Theory of Computational Complexi ty 475

HENNIE, F. C. One-tape, off-line Turing machine computations. Inf. Conlr. 8 (1965), 553-
578.

HENNIE, F. C. Crossing sequences and off-line Turing machine computations. 1965 IEEE
Conf. Rec. on Switching Circuit Theory and Logical Design, pp. 168-172.

HOPCROFT, J. E., AND ULLMAN, J .D. Relations between time and tape complexities. J. ACM
15 (1958), 414-427.

HOPCROFT, J. E., AND ULLMAN, J. D. Some results on tape bounded Turing machines,"
J. ACM 16 (1969), 168--177.

IRLAND, M. I., AND FISCHER, P .C . A bibliography on computational complexity. Res. Rep.
CSRR 2028, U. of Waterloo, Ontario, Canada, Oct. 1970.

KARP, R.M. Some bounds on the storage requirements of sequential machines and Turing
machines. J. ACM 1~ (1967), 478--489.

LEwis, P. M. II, STEARNS, R. E., AND HARTMANIS, J. Memory bounds for recognition of con-
text-free and context-sensitive languages. 1965 IEEE Conf. Rec. on Switching Circuit

Theory and Logical Design, pp. 191-202.
MCCREIGHT, E. M. Classes of computable functions defined by bounds on computation.

Doctoral Th., Computer Sci. Dep., Carnegie-Mellon U., Pittsburgh, Pa., 1969.
MEYER, A. R., AND RITCHIE, D.M. The complexity of loop programs. Proc. ACM 22nd Nat.

Conf., 1967, Psychonetics, Narberth, Pa., pp. 465-469.
RABIN, M.O. Real time computation. Israel J. Math. I (1964), 203-211.
RITCHIE, R.W. Classes of predictably computable functions. Trans. Amer. Math. Soc. 106

(1963), 139-173.
SAVlTCH, W. J. Deterministic simulation of non-deterministic Turing machines (detailed

abstract). Conf. Rec. ACM Symp. on Theory of Computing, 1969, pp. 247-248.
TRAKHTENBROT, B.A. Turing computations with logorithmie delay. Algebra i Logika 3, ~,

in Russian, (1964), 33-48.
YAMADA, H. Real-time computation and recursive functions not real-time computable,"

IRE Trans. Elec. Comp. EC-11 (1962), 753-760.

RECEIVED JULY, 1970; REVISED DECEMBER, 1970

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

