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Abstract. The use of Turing machines for caleulating finite binary sequences is studied
from the point of view of information theory and the theory of recursive functions. Various
results are obtained concerning the number of instructions in programs. A modified form of
Turing machine is studied from the same point of view. An application to the problem of de-
fining a patternless sequence is proposed in terms of the concepts here developed.

Introduction

In this paper the Turing machine is regarded as a general purpose computer and
some practical questions are asked about programming it. Given an arbitrary
finite binary sequence, what is the length of the shortest program for calculating it?
What are the properties of those binary sequences of a given length which require
the longest programs? Do most of the binary sequences of a given length require
programs of about the same length?

The questions posed above are answered in Part 1. In the course of answering
them, the logical design of the Turing machine is examined as to redundancies, and
it is found that it is possible to increase the efficiency of the Turing machine as a
computing instrument without a major alteration in the philosophy of its logical
design. Also, the following question raised by C. E. Shannon [1] is partially an-
swered: What effect does the number of different symbols that a Turing machine
can write on its tape have on the length of the program required for a given caleula-
tion?

In Part 2 a major alteration in the logical design of the Turing machine is in-
troduced, and then all the questions about the lengths of programs which had pre-
viously been asked about the first computer are asked again. The change in the
logical design may be described in the following terms: Programs for Turing ma-
chines may have transfers from any part of the program to any other part, but
in the programs for the Turing machines which are considered in Part 2 there is a
fixed upper bound on the length of transfers.

Part 3 deals with the somewhat philosophical problem of defining a random or
patternless binary sequence. The following definition is proposed: Patternless
finite binary sequences of a given length are sequences which in order to be com-
puted require programs of approximately the same length as the longest programs
required to compute any binary sequences of that given length. Previous work
along these lines and its relationship to the present proposal are discussed briefly.

Part 1
1.1 We define an N-state M-tape-symbol Turing machine by an N-row by
M-column table. Each of the NM places in this table must have an entry consisting
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of an ordered pair (%, j) of natural numbers, where ¢ goes from 0 to N and j goes
from 1 to M -+2. These entries constitute, when specified, the program of the N-state
M-tape-symbol Turing machine. They are to be interpreted as follows: An entry
(%, 7) in the kth row and the pth column of the table means that when the machine
is in its kth state and the square of its one-way infinite tape which is being scanned
is marked with the pth symbol, then the machine is to go to its ¢th state if ¢ # 0
(the machine is to haltif ¢ = 0) after performing the operation of (1) moving the
tape one square to the right if j = M + 2, (2) moving the tape one square to the
left if j = M -+ 1, and (3) marking (overprinting) the square of the tape being
scanned with the jth symbol if 1 < j < M. Special names are given to the first,
second and third symbols. They are, respectively, the blank (for unmarked square),
0 and 1.
A Turing machine may be represented schematically as follows:

Endof Tape [ [ JOT AIul T T T T Jafofol TTTTTT...
Scanner | Tape

Black Box

It is stipulated that

(1.1A) Initially the machine is in its first state and scanning the first square
of the tape.

(1.1B) No Turing machine may in the course of a calculation scan the end
square of the tape and then move the tape one square to the right.

(1.1C) Initially all squares of the tape are blank.

Since throughout this paper we shall be concerned with computing finite binary
sequences, when we say that a Turing machine calculates a particular finite binary
sequence (say, 01111000), we shall mean that the machine stops with the sequence
written at the end of its tape, with all other squares of the tape blank and with its
scanner on the first blank square of the tape. For example, the following Turing
machine has just calculated the sequence mentioned:

Wﬁl,llllIFOLOIOITI N N O I O I A

Halted

1.2 There are exactly ((N + 1)(M + 2))* possible programs for an N-state
M -tape-symbol Turing machine. Thus to specify a single one of these programs re-
quires logs (((N + 1)(M + 2))*™) bits of information, which is asymptotic to
NM log, N bits for M fixed and N large. Therefore a program for an N-state
M -tape-symbol Turing machine (considering M to be fixed and N to be large) can
be regarded as consisting of about NM logs N bits of information. It may be, how-
ever, that in view of the fact that different programs may cause the machine to
behave in exactly the same way, a substantial portion of the information necessary
to specify a program is redundant in its specification of the behavior of the machine.
"This in fact turns out to be the case. It will be shown in what follows that for M
fixed and N large at least 1/M of the bits of information of a program are re-
dundant. Later we shall be in a position to ask to what extent the remaining por-
tion of (1 — 1/M) of the bits is redundant.
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The basic reason for this redundancy is that any renumbering of the rows of the
table (this amounts to a renaming of the states of the machine) in no way changes
the behavior that a given program will cause the machine to have. Thus the states
can be named in a manner determined by the sequencing of the program, and this
makes possible the omission of state numbers from the program. This idea is by no
means new. If may be seen in most computers with random access memories. In
these computers the address of the next instruction to be executed is usually 1
more than the address of the current instruction, and this makes it generally un-
necessary to use memory space in order to give the address of the next instruction
to be executed. Since we are not concerned with the practical engineering feasibility
of a logical design, we can take this idea a step farther.

oy

1.8 In the presentation of the redesigned Turing machine let us begin with an
example of the manner in which one ean take a program for a Turing machine and
reorder its rows (rename its states) until it is in the format of the redesigned ma-
chine. In the process, several row numbers in the program are removed and re-
placed by + or 4+ —this is how redundant information in the program is re-
moved. The “operation codes” (which are 1 for “print blank,” 2 for “print #ero,”
3 for “print one,” 4 for “shift tape left”” and 5 for “shift tape right”) are omitted
from the program; every time the rows are reordered, the op-codes are just carried
along. The program used as an example is as follows:

row 1 197
row 2 8 § 8
row 3 9 6 1
row 4 320
Tow 5 7T 78
row 6 6 5 4
row 7 8§ 6 4
row 8 @ 8 1
row B 9 1 8

To prevent confusion later, letters instead of numbers are used in the program:

row A AT G
row B H H I
row C I F A
row D C B J
row B G G H
row F P OE D
row G H F I
row H T H A
row [ I A H

Row A is the first row of the table and shall remain so. Replace A by 1 throughout
the table:

row 1 1 I G
row B H H H
row C 1 F 1
row D > B J
row E G G H
row I E D
row G H P I
row H I H 1
row L 1 1+ H
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To find to which row of the table to assign the number 2, read across the first
row of the table until a letter is reached. Having found an I,

(1) replace it by a -+,

(2) move row I so that it becomes the second row of the table, and
(3) replace I by 2 throughout the table:

row 1
row 2
row B
row C
row D
row E
row F
row G
row H

W OQW

HMEQW N~ +
Mg~ mo

To find to which row of the table to assign the number 3, read across the second
row of the table until a letter is found. Having found an H,

(1) replace it by a +,

(2) move row H so that it becomes the third row of the table, and
(8) replace H by 3 throughout the table:

row 1
row 2
row 3
row B
row C
row D
row E
row F
row G

WM OON®WNN M

HEQW e W
S o ha e ek R

To find to which row of ﬁhe table to assign the number 4, read across the third
row of the table until a letter is found. Having failed to find one, read across rows
1, 2 and 3, respectively, until a letter is found. (A letter must be found, for other-
wise rows 1, 2 and 3 are the whole program.) Having found a G in row 1,

(1) replace it by a <+,
(2) move row G so that it becomes the fourth row of the table, and
(3) replace G by 4 throughout the table:

row 1
row 2
row 3
row 4
row B
row C
row D
row E
row F

o ) RO S0 GO 8D RO

+ ++

B g g o0 kg 00 e

The next two assignments proceed as in the cases of rows 2 and 3:

row 1
row 2
row 3
row 4

1
21 +
2 3 1
3 + 2
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row 5 5 E D row 5 5 4+ D
row B 3 3 3 row 6 4 4 3
row C 2 5 1 row B 3 3 3
row D C B J row C 2 5 1
row E 4 4 3 row D C B J

To find to which row of the table to assign the number 7, read across the sixth
row of the table until a letter is found. Having failed to find one, read across rows
1, 2,3, 4,5 and 6, respectively, until a letter is found. (A letter must be found, for
otherwise rows 1, 2, 3, 4, 5 and 6 are the whole program.) Having found a D in
row 5,

(1) replace it by a ++,
(2) move row D so that it becomes the seventh row of the table, and
(3) replace D, by 7 throughout the table:

+

row 1
row 2
row 3
row 4
row §
row 6
row 7
row B
row C

N e L R R

ot R 0oy

o-oag.w_{_mr—’i"_'_
4

After three more assignments the following is finally obtained:

row 1 1 + +4
row 2 2 1 +
row 3 2 3 1
row 4 3 +

row 5 5 -+ +4-
row 6 4 4 3
row 7+ ++ ++
row 8 2 5 1
row 9 3 3 3
row 10

This example is atypical in several respects: The state order could have needed a
more elaborate scrambling (instead of which the row of the table to which a number
was assigned always happened to be the last row of the table at the moment),
and the fictitious state used for the purposes of halting (state 0 in the formulation
of Section 1.1) could have ended up as any one of the rows of the table except the
first row (instead of which it ended up as the last row of the table).

The reader will note, however, that 9 row numbers have been eliminated (and
replaced by + or +-) in a program of 9 (actual) rows, and that, in general,
this process will eliminate a row number from the program for each row of the program.
Note too that if a program is “linear” (i.e., the machine executes the instruction
in storage address 1, then the instruction in storage address 2, then the instruction
in storage address 3, etc.), only + will be used; departures from linearity necessitate
use of + .

There follows a description of the redesigned machine. In the formalism of that
description the program given above is as follows:
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10

a,,0 @, .1 © ,2
2,00 @,,0) © ,1)
@ ,0 6,,0 4,0
(31 )0) (0} )1) (27 10)
G, ,00 ©,,1) 0, ,2)
4, ,0) ¢, ,0) 3, ,0)
0, ;1) ©,,2) ©, ,2)
@, ,0) 6,,0) ,,0)
G, ,00 6,,0) B, ,0

Here the third member of a triple is the number of +’s, the second member is the
op-code, and the first member is the number of the next state of the machine if
there are no +’s (if there are +’s, the first member of the triple is 0). The number
outside the table is the number of the fictitious row of the program used for the
purposes of halting.

We define an N-state M -tape-symbol Turing machine by an (N 4+ 1) X M table
and a natural number n (2 < n < N+41). Each of the (N + 1)M places in this
table (with the exception of those in the nth row) must have an entry consisting of
an ordered triple (7,j,k) of natural numbers, where k is 0, 1 or 2; 7 goes from 1
to M +2; and

i goes from 1 to N+1 if &k = 0,
2=0 if & s 0.

(Places in the nth row are left blank.) In addition:

(1.8.1) The entries in which k£ = 1 ork = 2 are N in number.

Entries are interpreted as follows:

(1.3.2) An entry (2,5,0) in the pth row and the mth column of the table means
that when the machine is in the pth state and the square of its one-way infinite
tape which is being scanned is marked with the mth symbol, then the machine is to
go to its 7th state if 7 ## n (if £ = n, the machine is instead to halt) after performing
the operation of (1) moving the tape one square to the right if § = M + 2, (2)
moving the tape one square to theleft if j = M + 1, and (3) marking (overprinting)
the square of the tape being scanned with the jth symbol if 1 < 7 < M.

(1.3.3) An entry (0,7, 1) in the pth row and mth column of the table is to be
interpreted in accordance with (1.3.2) as if it were the entry (p-+1, 7, 0).

(1.8.4) For an entry (0, 7, 2) in the pth row and mth column of the table the
machine proceeds as follows:

(1.8.4a) It determines the number p’ of entries of the form (0, , 2) in rows of the
table preceding the pth row or to the left of the mth column in the pth row.

(1.8.4b) Tt determines the first p'+-1 rows of the table which have no entries
of the form (0, , 1) or (0, ,2). Suppose the last of these p’+1 rows is the p”th
row of the table.

(1.8.4¢) It interprets the entry in accordance with (1.3.2) as if it were the
entry (p”+1,7, 0).

1.4 In Section 1.2 it was stated that the programs of the N-state M -tape-
symbol Turing machines of Section 1.3 require in order to be specified (1 — 1/M)
the number of bits of information required to specify the programs of the N-state
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M -tape-symbol Turing machines of Section 1.1. (As before, M is regarded to be
fixed and N to be large.) This assertion is justified here. In view of (1.3.1), at most
NBMA2)" N+ ways of making entries in the table of an N-state
M -tape-symbol Turing machine of Seetion 1.3 count as programs. Thus only log.
of this number or asymptotically N(M —1) log; N bits are required to specify the
program of an N-state 3 -tape-symbol machine of Section 1.3.

Henceforth, in speaking of an N-state M -tape-symbol Turing machine, one of
the machines of Section 1.3 will be meant.

1.5 We now define two sets of functions which play a fundamental role in all
that follows.
The members Ly( ) of the first set are defined for M = 3, 4, 5, - - - on the set of
all finite binary sequences 8 as follows:
An N-state M -tape-symbol Turing machine can be programmed to caleulate
Sif and only if N > Ly(8).
The second set Ly(C,) (M = 3,4, 5, --+) is defined by
LM(C'”> = INaXg [JM(S),
where S is any binary sequence of length n.
Finally, we denote by wC, (M = 3,4, 5, ---) the set of all binary sequences S
of length n satisfying Ly (8S) = Ly{C,).

1.6 In this section it is shown that for M = 3, 4,5, -+,
Ly(Co) ~ (n/({(M — 1) logan)).

We first show that Ly (C,) is greater than a function of n which is asymptotically
equal to (n/{(M~1) logan)). From Section 1.4 it is clear that there are at most
o (remN(M=DloxaM) diffarent programs for an N-state M -tape-symbol Turing machine,
where ¢, denotes a (not necessarily positive) function of 2 and possibly other vari-
ables which tends to zero as x goes to infinity with any other variables held fixed.
Since a different program is required to calculate each of the 2" different binary
sequences of length n, we see that an N-state M -tape-symbol Turing machine can
be programmed to calculate any binary sequence of length n only if

(1 4+ e)NM — DlogeN 2 n or N> (14 e)(n/((M — 1) logsn)).

Tt follows from the definition of Ly(C.,) that
Lu(Co) 2 (1 4+ &) (n/({M — 1)logan)).

Next we show that Ly(C,) is less than a function of n which is asymptotically
equal to (n/((M—1) logan)). This is done by showing how to construct for any
binary sequence S of length not greater than (14+ev)N(M —1) log: N a program
which causes an N-state M -tape-symbol Turing machine to caleulate S. The main
idea is illustrated in the case where M = 3 (see Figure 1).

The execution of this program is divided into phases. There are twice as many
phases as there are rows in Section I. The current phase is determined by a binary
sequence P which is written out starting on the second square of the tape. The nth
phase starts in row 1 with the scanner on the first square of the tape and with

i

2t “*“ 1:
2+ 2.

it

{P =111---1 (il's)ifn
P=111---10(iUs)ifn

\
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Row Column Number
Number 1 2 3

1 2, 4 2, 4 2, 4

2 e, 2 e, 8 3, 4

3 v 2 -, 3 4, 4

4 .2 -, 3 5, 4

5 -, 2 3 6, 4 |(Section I: approximately

6 vy 2 +, 3 7,4 |[(1—~1/log.N)N rows

7 vy 2 3 8, 4

8 52 3 9, 4

d | d+1,4 d+1,4 d+1,4

d+1! d+2, 4 d+2, 4 d+2, 4

d+2 | d+3,4 d+3,4 d+3, 4

d+3 | d+4,4 dt4,4 d+4, 4 |[Section II: approximately
d+4 | d+45,4 d+8,4 d+5, 4 |[N/log.N rows

d+5| d+6,4 d+6,4 d46, 4

d+6 | d+7,4 d+7,4  d+7, 4

d+7| d+8,4 d+8,4 d+8, 4

S |[This section is the same (except

¢ [for the changes in row numbers ||{Section III: a fixed number

caused by relocation) regardless |[of rows
of the value of N.]

Fia. 1
This program is in the format of the machines of Section 1.1.
There are N rows in this table. The unspecified row numbers in Section I are all in the range
from d to f—1, inclusive. The manner in which they are specified determines the finite binary
sequence S which the program computes.

Control then passes down column three through the (4+1)-th row of the table, and
then control passes to

row 4+2, column 1 if n = 27 + 1,
row i+2, column 2 if » = 27 + 2,

which (1) changes P to what it must be at the start of the (n-+1)-th phase, and
(2) transfers control to a row in Section II. Suppose this row to be the mth row of
Section II from the end of Section II.

Oncee control has passed to the row in Section II, control then passes down Section
IX until row f is reached. Each row in Section I causes the tape to be shifted one
square to the left, so that when row f finally assumes control, the scanner will be on
the mth blank square to the right of P. The following diagram shows the way things
may look at this point if » is 7 and m happens to be 11:

COnafel T T T T T ITTI LTI ITT ... JoJoTiTo[uT [afifoluf1] ...
N N y ; [ —— p
P 10 Long Blank Se.. .S

Region

Now control has been passed to Section III. First of all, Section III accumulates
in base-two on the tape a count of the number of blank squares between the scanner
and P when f agssumes control. (This number is m— 1.) This base-two count, which is
written on the tape, is simply a binary sequence with a 1 at its left end. Section II1
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then removes this 1 from the left end of the binary sequence. The resulting sequence
is called S, .
Note that if the row numbers entered in

row i+2, column 1 if n = 27 + 1,
row i+2, column 2 if n = 2§ + 2,

of Section I are suitably specified, this binary sequence S, can be made any one of the
2" Dbinary sequences of length » = (the greatest integer not greater than
logs (f—d) — 1). Finally, Section III writes S, in a region of the tape far to the
right where all the previous S; (7 = 1, 2, ---, n—1) have been written during
previous phases, cleans up the tape so that only the sequences P and
S;{j = 1,2, -+, n) remain on it, positions the scanner back on the square at the
end of the tape and, as the last act of phase n, passes control back to row 1 again.

The foregoing description of the workings of the program omits some important
details for the sake of clarity. These follow.

It must be indicated how Section 11T knows when the last phase (phase 2(d—2))
has occurred. During the nth phase, P is copied just to the right of 81,8z, -+, Sa
(of course a blank square is left between S, and the copy of P). And during the
(n+1)-th phase, Section III checks whether or not P is currently different from
what it was during the nth phase when the copy of it was made. If it isn’t different,
then Section III knows that phasing has in fact stopped and that a termivation
routine must be executed.

The termination routine first forms the finite binary sequence S consisting of
Si, 8z, -+, Sag-g , each immediately following the other: As each of the S; can
be any one of the 2" binary sequences of length v if the row numbers in the entries in
Section I are appropriately specified, it follows that §* can be any one of the 2*
binary sequences of length w = 2(d—2)v. Note that

2(d — Doga (f —d) — 1) = w > 2(d — 2)(loge (f — d) — 2),
so that
w e~ 2((1 — 1/logs NYN)(loge (N/logs N)) ~ 2N loga N.
As we want the program to be able to compute any sequence S of length not greater
than (2+ex)N loga N, we have S * consist of § followed to the right by a single 1
and then a string of 0%s, and the termination routine removes the rightmost (’s and
first 1 from S*. Q.E.D.

The result just obtained shows that it is impossible to make further improvement
in the logical design of the Turing machine of the kind described in Section 1.2 and
actually effected in Section 1.3; if we let the number of tape symbols be fixed and
speak asymptotically as the number of states goes to infinity, in our present Turing
machines 100 percent of the bits required to specify a program also serve to specify
the behavior of the machine.

Note too that the argument presented in the first paragraph of this section in fact
establishes that, say, for any fixed s greater than zero, at most n™°2" binary sequences

S of length n satisfy
Lu(8) £ (1 + &)(n/((M — 1) logan)).

Thus we have:
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For any fixed s greater than zero, at most n 2" binary sequences of length n fail to
satisfy the double inequality:

(1 + &)(n/((M — 1)logan)) < Lu(8) £ (1 4+ &' )(n/((M — 1) logzn)).

1.7 It may be desirable to have some idea of the ‘local” as well as the “global”’
behavior of Ly(C,). The following program of 8 rows causes an 8-state 3-tape-
symbol Turing machine to compute the binary sequence 01100101 of length 8 (this
program is in the format of the machines of Section 1.1):

1,2 2,4 2,4
2,3 3,4 3,4
3,3 4,4 4.4
4,2 54 5,4
5,2 6,4 6,4
6,3 7,4 7,4
7,2 8,4 8,4
8,3 0,4 0,4.

And in general:

(1.7.1) Lu(C,) < n.
From this it is easy to see that for m greater than n:

(1.72) Lu(Cn) £ Lu(Cy) + (m — n).
Also, for m greater than n:

(1.7.8) Lu(Cn) + 1 2 Ly(C,).
For if one can calculate any binary sequence of length m greater than n with an
M -tape-symbol Turing machine having Ly(Cx) states, one can certainly program
any M-tape-symbol Turing machine having Ly(C,) + 1 states to calculate the
binary sequence

.................... 10000000000 -« - - -« - « - 0000000000
Any particular sequence This sequence of
of length n length (m—n)

and then—instead of immediately halting—to first erase all the 0’s and the first 1 on
the right end of the sequence. This last part of the program takes up only a single
row of the table; in the format of the machines of Section 1.1 this row r is:

oW 7 5 nl 0L

Together (1.7.2) and (1.7.3) yield:
(1.7.4) | Lu(Cara) — Lu(Cr)| £ 1.
From (1.7.1) it is obvious that Lx(C:) = 1, and with (1.7.4) and the fact that
Ly(C,) goes to infinity with = it finally is concluded that: "
(1.7.6) For any positive integer p there is at least one solution n of Ly(C,) = p.

1.8 In this section a certain amount of insight is obtained into the properties
of finite binary sequences S of length » for which L (8) is close to Ly(C,). M is
considered to be fixed throughout this section. There is some connection between
the present subject and that of Shannon in [2, Pt. I, especially Th. 9].

The main result is as follows:

(1.8.1) Tor any ¢ > 0 and d > 1 one has for all sufficiently large n: If S is any
binary sequence of length n satisfying the statement that
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(1.8.2) the ratio of the number of 0’s in S to » differs from 3 by more than e,
then Ly(S) < Ly(Ciangtes—o1)-
Here H(p, q)(p 2 0, ¢ 2 0, p + ¢ = 1) is a special case of the entropy function of
Boltzmann statistical mechanics and information theory and equals

[0 if p=0 or 1,
{—’[) logep — qlogeq otherwise.

Also, a real number enclosed in brackets denotes the least integer greater than the
enclosed real. The H function comes up because the logarithm to the base-two of the

number > <7;> of binary sequences of length » satisfying (1.8.2) is
P/ )~ | >e

asymptotic to nH(} 4+ ¢, ¥ — ¢). This may be shown easily by considering the ratio
of successive binomial coefficients and using the fact that log (n!) ~ n log n.

To prove (1.8.1), first construct a class of effectively computable funetions M,( -)
with the natural numbers from 1 to 2 as range and all binary sequences of length n
as domain. M,.(S) is defined to be the ordinal number of the position of 8 in an order-
ing of the binary sequences of length n defined as follows:

1. If two binary sequences S and S’ have, respectively, m and m’ 0’s, then S comes
before (after) S according as |(m/n) — % is greater (less) than [(m//n) — 3.

2. If 1 does not settle which comes first, take S to come before (after) 8’ according
as S represents (ignoring 0’s to the left) a larger (smaller) number in base-two
notation than 8’ represents.

The only essential feature of this ordering is that it gives small ordinal numbers to
sequences for which [(m/n) — | has large values. In fact, as there are only
gUrendited=a pinary sequences S of length n satisfying (1.8.2), it follows that at
worst M ,(8) is a number which in base-two notation is represented by a binary
sequence of length ~nH(% + ¢, 3 — ¢). Thus in order to obtain a short program
for computing an S of length n satisfying (1.8.2), let us just give a program of fixed
length r the values of n and M.,(S) and have it compute S( =M, (M.(S))) from
this data. The manner in which for n sufficiently large we give the values of n and
M.(8) to the program is to pack them into a single binary sequence of length at
most (1 + (d — 1)/2)H(} + ¢, 3 — e)] 4 2(1 + {loga n]) as follows:

The binary sequence representing M,(S) The binary sequence representing n
in base-two notation with each of its bits doubled
(e.g., if n = 43, this is 110011001111)

Clearly both n and M.,.(S) can be recovered from this sequence. And this sequence

can be computed by a program of Ly(Cnas@-1/9mG+ed—e) 1420+ (loggn)) ) TOWS,
"~ Thus for n sufficiently large this many rows plus r is all that is needed to compute
any binary sequence S of length » satisfying (1.8.2). And by the asymptotic formula
for Ly (C,) of Section 1.6, it is seen that the total number of rows of program re-
quired is, for n sufficiently large, less than Ly(Cuangre—o1). Q-E.D.

From (1.8.1) and the fact that H(p, ¢) < 1 with equality if and only if p = ¢ = 3,
it follows from Liy(Cn) ~ (n/((M—1) logs n)) that, for example,

(1.8.3) Torany e > 0, all binary sequences S in C., , n sufficiently large, violate

(1.8.2);
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and more generally,

(1.8.4) 1et S.,, B, , 8., - be any infinite sequence of distinet finite binary
sequences of lengths, respectively, ny, na, ns, --- which satisfies Ly(S8,,) ~
Lig(Cr,). Then as k goes to infinity, the ratio of the number of (5 in 8, to 7, tends
to the limit 4.

We now wish to apply (1.8.4) to programs for Turing rmachines. In order to do
this we need to be able to represent the table of entries defining any program as a
single binary sequence. A method is sketched hers for coding any program Tx a 0c-
cupying the table of an N-state M -tape-symbol Turing machine into a single binary
sequence C( Ty y) of length (1 -+ e ) N{M~1) log V.

First, write all the mermbers of the ordered triples entered in the table in base-two
notation, adding 4 safficient number of (°s to the left of the numersls for all numerals
to be

(1) as long as the base-two nuraeral for N1 if they result from the first
mermber of a triple,

(2) as long as the base-two numeral for M 42 if they result from the second
member, and

(8) as long as the base-two numersl for 2 if they result from the third member.

The only exception to this rule is that if the third member of a triple is 1 or 2, then
the first member of the triple is not written in base-two notstion; no binary sequences
are generated from first members of such triples. Last, all the binary sequences that
have just been obtained are joined together, starting with the binary sequence that
was generated from the first member of the triple entered at the intersection of row 1
with column 1 of the table, then with the binary sequence generated from the second
member of the triple - -+, - - - from the third member - - - |, - - - from the first member
of the triple entered at the intersection of row 1 with column 2, - - - from the second
member -, <+ from the third member - - -, and so on across the first row of
the table, then across the second row of the table, then the third, - - and finally
across the Nth row.

The result of all this is & single binary sequence of length (1 + ey )N (M 1) logy N
{(in view of (1.3.1)) from which one can effectively determine the whole table of
entries which was coded into it, if only one is given the valuesof N and M. Butitis
possible to code in these last pieces of information using only the rightmost
2(1 + [loge N])+2(1 + [logs M]) bits of a binary sequence consequently of total
length

(1 4+ ex)N(M ~ 1) loga N -+ 2(1 + [loga N]) -+ 2(1 + [log. M])
= (1 4+ ex )N(M — 1) log: N,

by employing the same trick that was used to pack two separate pieces of informa-
tion into a single binary sequence earlier in this section.

Thus we have a simple procedure for coding the whole table of entries Ty & de-
fining a program of an N-state M -tape-symbol Turing machine and the parameters
N and M of the machine into a binary sequence C{ Tw.») of (1 + ex)N{(M —1) logs N
bits.

'We now obtain the result:

{1.8.8) Let Tyysp.ae s Tigesp.r, - <+ be aninfinite sequence of tables of entries
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which define programs for computing, respectively, the distinet finite binary se-
quences 81,8z, -+ . Then Ly C{T 18,00 ) ~ Lul Cay), where ng is the length of
CUT L ppts )

With (1.8.4) this gives the proposition:

(1.8.6) Onthe hypothesis of { 1.8.5), as k goes to infinity, the ratio of the number
of O's in C{T'w,s0,5) t0 its length tends to the Hmit 4.

The proof of {1.8.5) depends on three facts:

(1.8.7a) There is an effective procedure for coding the table of enfries Ty de.
fining the program of an & state M-tape-symbel Turing machine together with the
two paramebers N and M into s single binary sequence {(7Tx ) of length
(1 4 e ) N{M—1) loge .

{1.87b) Any binary sequence of length not greater than {1 4 e )N{M 1)
logs N can be caleulated by & suitebly programamed ¥.atate M-tape-svmbol Turing
machine,

(1.8.7¢) From a universal Turing machine program it is possible to construet
program for a Turing mechine {with a fixed vumber v of rows) to take O( Ty ») and
decode it and to then imitate the caleulations of the machine whose table of entries
T 1t then knows, until it finally caleulates the finite binary sequence 8 which the
program being imitated caleulates, if 8 exists.

{1.8.7a) has just been demonstrated. (1L8.7b) was shown in Bection 1.6, {The
concept of & universal program i due to Turiog [B1)

The proof of { 1.8.5) follows. From { 1L8.74) and {1.8.7b},

L&!{C{ ?’bmfs@mﬁ} = “ e ﬁ%}&w{&%};
and from {(1.8.7¢) and the hypothesis of {1.8.5},
LM{ {?{ T«ww,y}} “r :*?1 }fmigk}~

1t follows that Lu{C{Tyywo.u)) = (1 + a)lu(Ss), which is—since the length of
CUT apian o) 18 (1 4 &) Lul{ Sy (M —1) logs Lul{8s) and

L‘M{CQH‘M}L@;K&;MMMBM&@&«M%;}} o ’{.}" "”%"' gﬁygkl’ﬂ(ﬁfav}
—gimply the conclusion of {1.8.5).

1.5 The topic of this section is an application of everything that precedes with
the exception of Section 1.7 and the first half of Section 1.8, C. E. Bhannon sug-
gests {1, p. 165] that the state-symbol product NM is a good measurve of the cal-
culating abilities of an N-state M -tapesymbol Turing machine. If one is interested
in comparing the caleulating abilities of lurge Turing machines whose M values vary
over a finile range, the results that follow suggest that N(M 1) is a good measure
of calculating abilities. We have as an application of a slight generalization of the
ideas used to prove (1.8.5):

(1.8.18) Any calculation which an N-state M -tape-symbol Turing machine can
be programined to perform can be imitated by any N ".state M -tape-syrabol Turing
machine satisfying (1 + ex)N(M ~1} loge N < (1 + e IV 1) loga N if it
is suitably programmed.

And directly from the asymptotic formula for La( Cn) we have: )

(1.91%) T (1 + e )N(M~1)log N < (1 + e )N'(M'~1) loga N, then
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there exist finite binary sequences which an N'-state M’ -tape-symbol Turing ma-
chine can be programmed to calculate and which it is impossible to program an
N-gtate M-tape-symbol Turing machine to ca,lculate

As (1 + eN)N(M 1) loga N = ((1 4+ e )N(M—1)) log, ((1 + eN WN(M—1))
and for z and &’ greater thdﬂ one, x loge x is greater (less) than z log, " according as
x is greater (less) than x’, it follows that the inequalities of (1.9.1a) and (1.9.1b)
give the same ordering of ca,lculating abilities as do inequalities involving functions
of the form (1 + ex)N(M—1).

Part 2

2.1 In this section we return to the Turing machines of Section 1.1 and add to
the conventions (1.1A), (1.1B) and (1.1C),

(2.1D) An entry (7,j) in the pth row of the table of a Turing machine must
satisfy | t—p | < b. In addition, while & fictitious state is used (as before) for the
purpose of halting, the row of the table for this fictitious state is now considered to
come directly after the actual last row of the program.

Here b is a constant whose value is to be regarded as fixed throughout Part 2.
In Section 2.2 it will be shown that b can be chosen sufficiently large that the Turing
machines thus defined (whichwe take the liberty of naming “bounded-transfer Turing
machines”) have all the calculating capabilities that are basically required of Turing
machines for theoretical purposes (e.g., such purposes as defining what one means
by “effective process for determining ...”), and hence have calculating abilities
sufficient for the proofs of Part 2 to be carried out.

(2.1D) may be regarded as a mere convention, but it is more properly considered
as a change in the basic philosophy of the logical design of the Turing machine (i.e.,
the philosophy expressed by A. M. Turing [3, Sec. 9]).

Here in Part 2 there will be little point in considering the general M -tape-symbol
machine. It will be understood that we are always speaking of 3-tape-symbol
machines.

There is a simple and convenient notational change which can be made at this
point; it makes all programs for bounded-transfer Turing machines instantly re-
locatable (which is convenient if one puts together a program from subroutines)
and it saves a great deal of superfluous writing. Entries in the tables of machines
will from now on consist of ordered pairs (¢, 7'), where ¢ goes from —b to b and
j' goesfrom 1to 5. A “new” entry (¢,5) is to be interpreted in terms of the function-
ing of the machine in a manner depending on the number p of the row of the table
it 18 in; this entry has the same meaning that the “old” entry (p-+7, ;') used to
have.

Thus, halting is now accomplished by entries of the form (k, 7) (1 < k < b) in
the kth row (from the end) of the table. Such an entry causes the machine to halt
‘after performing the operation indicated by J.

2.2 In this section we attempt to give an idea of the versatility of the bounded-
transfer Turing machine. It is here shown in two ways that b can be chosen suffi-
ciently large so that any calculation which one of the Turing machines of Section 1.1
can be programmed to perform can be imitated by a suitably programmed bounded-
transfer Turing machine.
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As the first proof, b iz taken to be the number of rows in a 3-tape-symbol universal
Turing machine program for the machines of Section 1.1. This universal program
(with its format changed to that of the bounded-transfer Turing machines) oveu-
pies the last rows of a program for & bounded-transfer Turing ronchine, & program
which 1= mainly devoted to writing out on the tape the information which will ena-
ble the universal program fo imitate any caleulation which any one of the Turing
machines of Section 1.1 can be programmed to perform. One row of the program is
used to write out ench symbol of this information { as in the program in Section 1.7},
and control passes straight through the program row after row until it reaches the
unive program.

Now for the second proof. To program a bounded-transfer Turing machine in such
a manner that it imitates the caleulations performed by o Turing machine of Section
1.1, consider alternate squares on the tape of the bounded-transfer Turing machine
to be the squares of the tape of the machine being initated. Thus

oy

Lol DL DIl TTT LTI

ks

is imitated by

Lodni el Tl L4 1 §T1 00 0 70 0 T 1 Y

After the operation of a state (i.e., write 0, write 1, write blank, shift tape left,
shuft tape right) has been imitated, as many Us as the number of the next state to be
imitated are written on the squares of the tape of the bounded-transfer Turing
machine which are not used to lmitate the squsres of the other machine's tape, start-
ing on the square immediately to the right of the one on which is the scaoner of the
hounded-transfer Turing machine. Thus if in the foregoing situation the next state
to be imitated is state number three, then the tape of the bounded-transier Turing
machine becomes

CO Tl dol Tnl T3 Jal ] lal MGE;X [ 00 O O R

The rows of the table which cause the bounded-transfer Turing machive to do the
foregoing (type I rows) are interwoven or braided with two other types of rows. The
first of these (type II rows) is used for the sole purpose of putting the bounded-
transfer Turing machine back in its initial stase (row 1 of the table; this row is a type
LI row). They appear (as do the other two types of rows) periodically throughout
the table, and each of them does nothing but transfer control to the preceding one.
The second of these { type IIT rows) serve to pass control back in the other direction;
each time control is about to pass » block of type 1 rows that imitate a particular
state of the other machine while traveling through type LIl rows, the type Il rows
erase the rightmost of the 1’s used to write out the number of the next state to be
imitated. When finally none of these place-marking Us is left, control is passed to the
group of type I rows that was about to be passed, which then proceeds to tmitate the
appropriate state of the Turing machine of Bection 1.1.

Thus the obstacle of the upper bound on the length of transfers in bounded-trans-
fer Turing machines is overcome by passing up and down the table by small jumps,
while keeping track of the progress to the desired destination is achieved by sub-
tracting a unit from a count written on the tape just prior to departure.

Although bounded-transfer Turing machines have been shown to be versatile, it
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is not true that as the number of states goes to infinity, asymptotically 100 percent
of the bits required to specify a program also serve to specify the behavior of the
bounded-transfer Turing machine.

2.3 In this section the following fundamental result is proved.

(2.8.1) L(C,) ~ a*n, where a* is, of course, a positive constant.

First it is shown that there exists an g greater than zero such that:

(2.32) L(C,) = an. '

It is clear that there are exactly ((5)(2b + 1)) * different ways of making entries
in the table of an N-state bounded-transfer Turing machine; that is, there are
2(@loesQOHHIIN) gigrerent programs for an N-state bounded-transfer Turing machine.
Since a different program is required to have the machine calculate each of the 27
different binary sequences of length n, it can be seen that an N-state bounded-
transfer Turing machine can be programmed to calculate any binary sequence
of length n only if

(3loga (106 + 5))N > n or N > (1/(3logs (10b + 5)))n.

Thus one can take a = (1/(3loge (106 + 5))).

Next it is shown that: ’

(2.8.3) L(Ca) + L(Cn) 2 L(Cuym).

To do this we present a way of making entries in a table with at most
L(C,) + L(C.) rows which causes the bounded-transfer Turing machine thus pro-
grammed to calculate any particular binary sequence 8 of length n+4-m. 8 can be ex-
pressed as a binary sequence S’ of length n followed by a binary sequence S” of
length m. The table is then formed from two sections which are numbered in the
orderin which they are encountered in reading from row 1 to the last row of the table.
Section I consists of at most L(C,) rows. It is a program which calculates S’. Section
II consists of at most L(C») rows. It is a program which calculates S”. It follows
from this construction and the definitions that (2.3.3) holds.

(2.3.2) and (2.3.3) together imply (2.3.1). This will be shown by a demonstration
of the following general proposition:

(2.3.4) Let Ay, Ay, A;, -+ be an infinite sequence of natural numbers satis-
fying

(286) An+A4n 2 Anim .

Then as n goes to infinity, (4,./n) tends to a limit from above.

Tor all n, A, > 0, so that (4,/n) > 0; thatis, {(4./n)} is a set of reals bounded
from below. It is concluded that this set has a greatest lower bound a*. We now show
that limu-» (4/n) = a*. Since a* is the greatest lower bound of the set {(4./n)},
for any e greater than zero there is a d for which

(2.36) (Aq/d) < a* +e.

Every natural number n can be expressed in the form n = ¢d + r, where
0 < r < d. From (2.3.5) it can be seen that for any ni, ns,ns, <+ , g1,

+1
12. Ank' 2 Az,‘:j}nk .

Takingn, = d (k= 1,2, ---, ¢) and ngq = 7 in this, we obtain
qu + Ar 2 Aqd+r - An 3
which with (2.3.6) gives
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gl(a* +e) = (n— 1" +e >4, — 4,
ar
(1 = #/n)(a” + ) 2 (Aa/n) — (A/n),
which implies
a* + e > (du/n) + e

or

im (4./n) < a* +e

”oro
Rince e > 0 is arbitrary, it can be concluded that
fm (4,/n) < o,

which with the fact that (A./n) > ¢ for all n gives

lim (4./n) = a*

2.4 In Section 2.3 an asymptotic formula analogous to a part of Section 1.6 was
demonstrated ; in this section a result is obtained which completes the analogy. This
result is most conveniently stated with the aid of the notation B(m) (where m is a
natural number) for the binary sequence which is the numeral representing m in
base-two notation (e.g., B(6) = 110).

{2.4.1) There exists a constant ¢ such that those binary sequences S of length n
satisfying

(2.4.2)
L(8S) £ L(Cy) = L(B(L(C,))) — llogs L{B(L(C,)))] .
— L(Cw) ~ [logs L(Cw)] — ¢

are less than 2" in number.

The proof of {2.4.1) is by contradiction. We suppose that those S of length n
satisfying (2.4.2) are 2" or more in number and we conclude that for any par-
ticular binary sequence S~ of length n there is a program of at most L(C.)~1
rows that causes a bounded-transfer Turing machine to caleulate S~. This table
consists of 11 sections which come one after the other. The first section consists of a
single row which moves the tape one square tothe left (1,4 1,4 1,4 will certainly
do this). The second section consists of exactly L(B(L(C,))) rows; it is a program
for computing B(L(C,)) consisting of the smallest possible number of rows. The
third section is merely a repetition of the first section. The fourth section consists
of exactly [logs L(B(I(C,)))] rows. Its function is to write out on the tape the
binary sequence which represents the number L{(B(L(C,))) in base-two notation.
Since this is a sequence of exactly [logs L(B(L(Cx,)))] bits, & simple program exists
for calculating it consisting of exactly [loga L(B(L(C,)))] rows each of which
causes the machine to write out a single bit of the sequence and then shift the tape a
single square to the left (eg.,, 0,2 1,4 14 will do for a 0 in the sequence). The
fifth section is merely a repetition of the first section. The sixth section consists of
at most L(C,.) rows; it is a program consisting of the smallest possible number of
rows for computing the sequence 8" of the m rightmost bits of S~. 'The seventh
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gection is merely a repetition of the first section. The eighth section consists of
exactly Hogs L{Cn)] rows. Its function iﬂz to write out on the tape the binary se-
quence which represents the number L((C,) in base-two notation. Since this 15 o
sequence of exactly {loge L(C,)] bits, a simple program exists for calenlating it
congisting of exactly [logs L(,.)] rows each of which causes the machine to write
out a single bit of the sequence and then shift the tape o single square to the left,
The ninth section is merely a repetition of the first section. The tenth section con-
sists of at most as many rows as the expression on the right-hand side of the |
equality (2.4.2). It is a program for caleulating one (out of not less than 2777)
of the sequences of length n satisfying (2.4.2) (which one it is depends on 57 in a
manner which will become clear from the discussion of the eleventh section; for
now we merely denote it by S°).

We now come to the last and erucial eleventh section, which consists by definition
of (¢~ 63 rows, and which therefore brings the total number of rows up to at most
L+ LIBOL(C)Y) 4+ 1 lloge LOB(L(C) )] 4+ 14 LC) 4 1 - [logs L(Cu)]
4 1 - { the expression on the right-hand side of the inequality (2.4.2)) -+ (¢~ 6)

e L(Cn} b l
'Wh(*n bbi& *;eet;i(m (;f the' pmgmm mm (’)W’I‘, the numbers and sequences L(C.),

?\ote, ixmt of Jii, t;hat %(zbmn 11 can: { lj computbe the value v of the right-hand
axpression of the inequality (2.4.2) from this data, (2) find the value of » from this
data (simply by counting the number of bits in the sequence 8 “y, and (3) find the
value of m from this data (simply by counting the number of bits in $*). Using its
kuowledge of v, m and n, section 11 then computes from the sequence S a new
sequence S which is of length (n — m). The manner in which it does this is
discussed in the next paragraph. Finally, section 11 adjoins the sequence S” to
the right of 8, positions this sequence which is in fact S~ properly for it to be
able to be regarded caleulated, cleans up the rest of the tape, and halts scanning
the square just to the right of 8. 8™ has been calenlated.

To finish the proof of (2.4.1) we must now only indicate how section 11 arrive
at 8% (of length (n — m)) from v, m, n and S*. (And it must be here that it is
made clear how the choice of §* depends on §7.) By assumption, S” satisfies

(2.4.3) L(8") < vand 8" is of length n.

Also by assumption there are at least sequences which satisfy (2.4.3).
Now section 11 contwins a procedure which when given any one of some porticulor
serially ordered set 0, of 2°" sequences satisfying (2.4.3), will find the ordinal
rwmber of its position in ), . And the number of the position of S” in ,Q, is the
number of the position of 8 in the natural ordering of all binary sequences of
length (n — m) (i.e, ()O()‘w()(), o0~ - 031, 000---10, 000---11, -+, 111---00,
111-+-01, 111---10, 111---11). In the next and final paragraph of this proof,
the f(xmg,m% italicized sentence is explained.

It is sufficient to give here a procedure for serially calculating the members of
W, in order. (That is, we define a serially ordered @, for which there is a procedure. )
By assumption we know that the predicate which is satisfied by all members of
v , namely,

syt
2

(L) < )&+« g of length n),

<y 4t

is satisfied by at least 2" sequences. It should also be clear to the reader on the
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pasis of some background in Turing machine and recursive {unction theory {see
gspecially Davis [4], where recursive {function theory is developed from the con-
eopt of the Turing machine)} that the set @ of
all natural rumbers of ihe form 273°5°) where € i3 the natural number represenied.
i buse-two notation by o binary sequence S satisfiying

(L(S) < 2)&(S is of length n)

is recursively enumerable. Let 7' denote some particular Turing machine which i3
programmed in such a manner that it recursively enumerates (or, to use E. Post’s
term, generates) ¢. The definition of ., can now be given:

., is the set of binary sequences of length » which represent in base-two nota-
tion the exponents ol 5 in the prime factorization of the first 2% members of @
genernted by T whose prime factorizations have 2 with an exponent of n and 3
with an exponent of », and their order in &, is the order in which 1’ generates
them., Q.1.D.

It can be proved by contradiction that the set @ is not recursive. For were @
recursive, there would be a programm which given any finite binary sequence S
would caleulate L{S8). Hence there would be a program which given any natural
number 7 would ealeulate the members of (., . Giving 7 to this program ean be done
by a program of length [logs n]. Thus there would be a program of length [log 5 7]
-+ ¢ which would ealeulate an element, of €, . But we know that the shortest program
for caleulating an element of €, iz of length ~a*n, so that we would have for # suffi-
dently large an impossibility.

It should be emphasized that if L{(,) is an effectively computable function of »n
then the method of this section yields the following far stronger result:

There exists a constant ¢ such that those binary sequences S of length n
satisfying L(8) < L(C.) — L{Cw) — ¢ are less thap 2" in number.

2.5 The purpose of this section is to investigate the behavior of the right-
hand side of (2.4.2). We start by showing a result which is stronger for n sufliciently
large than the inequality L{C,) < =, namely, that the constant a™in the asymptotic
evaluation L((C,) ~ a*n of Section 2.3 is less than 1. This is done by detiving:

(2.5.1) Yor any s there exist n and m such that

L(C,) £ L(CW) + L{Cw) + o
(n 4+ m) is the smallest integral solution 2 of the inequality,

s < o+ {loge 2] — 1.

From {2.5.1) it will follow immediately that if e(n) denotes the function satisfy-
ing L{C,) = a™n 4+ e(n) (note that by Section 2.3 (e{n)/n) tends to 0 from above
as 7 goes to infinity), then for any s, L(C.) < L(C.) + L{C.) + c for some n
and m satisiving (n + m) = s — {1 -+ &) logs 5, which implies

0's < a*(s = (14 &) logss) +e(n) +e(m) or (0" 4+ &) loges L e(n) +e(m).

Hence as n and m are both less than s and at least one of e(n), e(m) is greater
than {a® + ) logy s/2, there are an infinity of # for which e(n) > (a” + ) logyn/2.
That is,

— L{Cy) — a*n 1

(26.2) Tim o lomn Zg




566 GREGORY J. CHAITIN

From (2.5.2) with L(C,) < n follows immediately

(25.38) a* <1

The proof of (2.5.1) is presented by examples. The notation 7xU is used, where
T and U are finite binary sequences for the sequence resulting from adjoining U
to the right of T. Suppose it is desired to calculate some finite binary sequence S of
length s, say S = 010110010100110 and s = 15. The smallest integral solution z of
s < z + [logs ] — 1 for this value of s is 12. Then § is expressed as §'#S” where S’
isof length 2 = 12and §”isof length s—z = 15 — 12 = 3, so that 8’ = 010110010100
and 8" = 110. Next 8’ is expressed as S“#S® where the length m of S” satisfies
A*B(m) = S for some (possibly null) sequence A consisting entirely of 0’s, and
the length n of S is 2~ m. In this case A»B(m) = 110, so that m = 6, S = 010110
and 8% = 010100. The final result is that one has obtained the sequences S* and S*
from the sequence S. And—this is the crucial point—if one is given the S and S”
resulting by the foregoing process from some unknown sequence S, one can reverse
the procedure and determine S. Thus suppose §* = 1110110 and 8% = 01110110000
are given. Then the length m of S” is 7, the length » of 8% is 11, and the sum z of
m and ni8 7 4 11 = 18. Therefore the length s of Smust be s = = + [log, z] — 1
=18+ 5— 1 = 22. Thus S = S*#8"+S", where S”is of length s — z = 22 — 18 = 4,
and so from A*B(m) = S or 0+B(7) = 87 one finds §7 = 0111. It is concluded that

S = S"»8%S" = 1110110011101100000111.

(For z of the form 2* what precedes is not strictly correct. In such cases s may equal
the foregoing indicated quantity or the foregoing indicated quantity minus one.
It will be indicated later how such cases are to be dealt with.)

Let us now denote by F the function carrying (8% S%) into S, and by F7' the
function carrying S into S¥, defining F7' similarly. Then for any particular binary
sequence S of length s the program of Figure 2 consists of at most

1+ L(FFA(8)) + 1 + L(FF(8)) + 2 + (¢ — 4) < L(C) + L(Cw) + ¢

rows with m-+n = z being the smallest integral solution of s < z + [logz ] — 1.
As this program causes S to be calculated, the proof is easily seen to be complete.

The second result is:

(2.6.4) Let f(n) be any effectively computable function that goes to infinity
with n and satisfies f(n + 1) — f(n) = 0 or 1. Then there are an infinity of dis-
tinet ny for which L(B(L(C4,))) < f(n).

This is proved from (2.5.5), the proof being identical with that of (1.7.5).

(2.6.6) For any positive integer p there is at least one solution n of L(C,) = p.
Let the ny satisfy L(C,,) = f~(k), where f (k) is defined to be the smallest value
of j for which f(j) = k. Then since L(C,) < n, f (k) < m . Noting that
is an effectively computable function, it is easily seen that

L(B(L(Cw))) = L(B(f7(k))) £ L(B(k)) + ¢ < [logs k] + .
Hence, for all sufficiently large k,
L(B(L(Cy))) < Moge k] + ¢ < k = f(f7(k)) < f(me). Q.E.D.

(2.5.4) and {2.4.1) yield:
(2.66) Let f(n) be any effectively computable function that goes to infinity
with n and satisfies f(n + 1) — f(n) = 0 or 1. Then there are an infinity of dis-
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}8ection I
Section II:
L(F ~1(8)) rows

1,4 1,4 1,4

jSection III
) Section IV:
jL(FR*l(S)) rows

P

}Sect-ion V:

1,4 1,4 1,4

|

| ¢—4 rows, by definition

Fie. 2
Hection II is a program with the smallest possible number of rows for calculating F ;~4(8).
Section IV is a program with the smallest possible number of rows for calculating Fg=1(8S).
Section V is a program that is able to compute F. It computes F(F ~1(8), Fr1(8)) = 8§,
positions S properly on the tape, cleans up the rest of the tape, positions the scanner on the
square just to the right of S and halts.
* Should « be of the form 2*, another section is added at this point to tell Section V which
of the two possible values s happens to have. This section consists of two rows; it is either
1,4 1,4 1,4 1,4 1,4 1,4
L2 1,2 1,2 % 1,3 1,3 1,3.

tinet 7 for which less than 2™ binary sequences S of length n, satisfy L(S) <
L(Ca,) — (a* + e)f(m).

Part 3

3.1 Consider a scientist who has been observing a closed system that once every
second either emits a ray of light or does not. He summarizes his observations in a
sequence of O’s and 1’s in which a zero represents ‘“ray not emitted” and a one
represents “‘ray emitted.” The sequence may start

0110101110~

and continue for a few thousand more bits. The scientist then examines the se-
quence in the hope of observing some kind of pattern or law. What does he mean
by this? It seems plausible that a sequence of 0’s and 1’s is patternless if there is no
better way to calculate it than just by writing it all out at once from a table giving
the whole sequence:

My Scientific Theory

ORI O RO MRMRD

This would not be considered acceptable. On the other hand, if the scientist should
hit upon a method by which the whole sequence could be calculated by a computer
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whose program is short compared with the sequence, he would certainly not con-
sider the sequence to be entirely patternless or random. And the shorter the pro-
gram, the greater the pattern he might ascribe to the sequence.

There are many genuine parallels between the foregoing and the way scientists
actually think. For example, a simple theory that accounts for a set of facts is
generally considered better or more likely to be true than one that needs a large
number of assumptions. By “simplicity” is not meant “ease of use in making pre-
dictions.” For although General or Extended Relativity is considered to be the
simple theory par excellence, very extended calculations are necessary to make
predictions from it. Instead, one refers to the number of arbitrary choices which have
been made in specifying the theoretical structure. One naturally is suspicious of a
theory the number of whose arbitrary elements is of an order of magnitude com-
parable to the amount of information about reality that it accounts for.

On the basis of these considerations it may perhaps not appear entirely arbitrary
to define a patternless or random finite binary sequence as a sequence which in
order to be calculated requires, roughly speaking, at least as long a program as any
other binary sequence of the same length. A patternless or random infinite binary
sequence is then defined to be one whose initial segments are all random. In making
these definitions mathematically approachable it is necessary to specify the kind of
computer referred to in therm. This would seem to involve a rather arbitrary choice,
and thus to make our definitions less plausible, but in fact both of the kinds of
Turing machines which have been studied by such different methods in Parts 1
and 2 lead to precise mathematical definitions of patternless sequences (namely,
the patternless or random finite binary sequences are those sequences S of length n
for which L(S) is approximately equal to L(C,), or, fixing M, those for which
Ly(8) is approximately equal to Lxy(C,)) whose provable statistical properties
start with forms of the law of large numbers. Some of these properties will be es-
tablished in a paper of the author to appear.’

A final word. In scientific research it is generally considered better for a pro-
posed new theory to account for a phenomenon which had not previously been
contained in a theoretical structure, before the discovery of that phenomenon rather
than after. It may therefore be of some interest to mention that the intuitive con-
siderations of this section antedated the investigations of Parts 1 and 2.

3.2 The definition which has just been proposed” is one of many attempts which
have been made to define what one means by a patternless or random sequence of
numbers. One of these was begun by R. von Mises [5] with contributions by A. Wald
[6], and was brought to its culmination by A. Church [7]. K. R. Popper [8] criticized
this definition. The definition given here deals with the concept of a patternless
binary sequence, a concept which corresponds roughly in intuitive intent with the
random sequences associated with probability % of Church. However, the author

t The author has subsequently learned of work of P. Martin-Lof (‘“The Definition of Random
Sequences,’’ research report of the Institutionen for Forsikringsmatematik och Matematisk
Statistik, Stockholm, Jan. 1966, 21 pp.) establishing statistical properties of sequences defined
to be patternless on the basis of a type of machine suggested by A. N. Kolmogorov. Cf. foot-
note 2.

2 The author has subsequently learned of the paper of A. N. Kolmogorov, Three approaches
to the definition of the concept “amount of information,” Problemy Peredachi Informatsii
[Problems of Transmission of Information], f, 1 (1965), 3-11 {in Russian], in which essentially
the definition offered here is put forth.
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does not follow the basic philosophy of the von Mises—Wald-Church definition;
instead, the author is in accord with the opinion of Popper [8, Sec. 57, footnote 1]:

1 pome here to the peint where T failed 1o carry out fully my intuitive programume-—that of
analvsing randomness a5 far as it s possible within the region of finile sequences, and of pro-
ceeding to infinile reference sequences {in which we need limils of relative frequencies) only
afterwards, with the aim of obtaining a theory in which the existence of frequency limits fol-
lows from the randowm character of the sequence.

Nonetheless the methods given here are similar to those of Church; the concept of
effective computability is here made the central one.

A discussion can be given of just how patternless or random the sequences given
in this paper appear to be for practical purposes. How do they perform when sub-
jeeterd to statistical tests of randomness? Can they be used in the Monte Carlo
method? Here the somewhat tantalizing remark of J. von Neumann [9] should
perhaps be mentioned:

Any one who ronsiders arithmetical methods of producing random digits is, of course, in &
sinte of sin. For, as has been pointed oub several times, there is no such thing as a random
nignber—ihere are only methods to produce random numbers, and & strict arithmetical pro-
cedure of course is not such s method. (1t is true that o problem that we suspect of being solv-
able by random methods may be solvable by some rigorously defined sequence, but this is a
deeper mathematical question than we can now go into.)

Acknowledgment. The author is indebted to Professor Donald Loveland of New
York University, whose constructive criticism enabled this paper to be much
clearer than it would have been otherwise,

Recaiver Ooropesr, 10685; vevisep Mancy, 1966
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