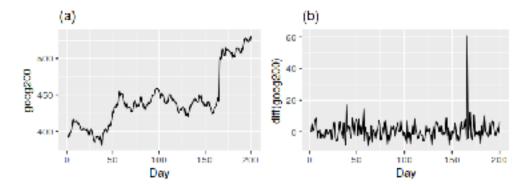
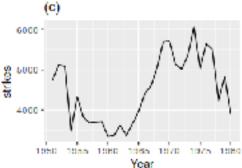
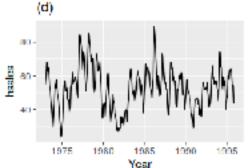
More on Time Series & ARIMA

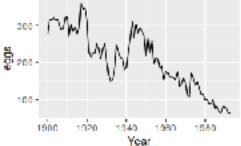
Giri Narasimhan 2019

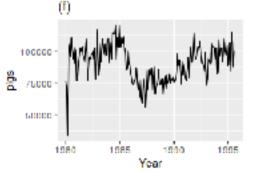

What is ARIMA?

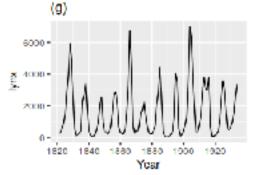
- ARIMA has 3 components
 - Integrated: need differencing to make stationary
 - D=0 means original time series
 - D=1 means time series of differences to previous time
 - D=2 means difference of differences (2nd order)
 - <u>AutoRegression</u>: lags of stationarized series are correlated
 - Moving Average: lags in forecast error needed
- Advanced Notes: Link

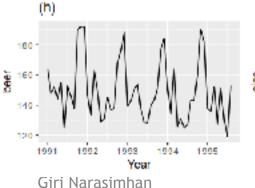

Stationarity

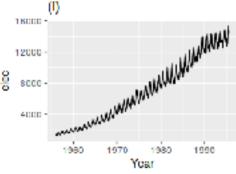

- Stationary time series
 - constant statistical properties independent of time
 - Example: white noise, non-seasonal cyclic behavior
- Which properties?
 - Mean: No trend (avg)
 - Variance: no heteroscedasticity
 - Autocorrelations: constant degree of "wiggliness"
- ARIMA assumes time series is non-stationary and model incorporates above 3 properties

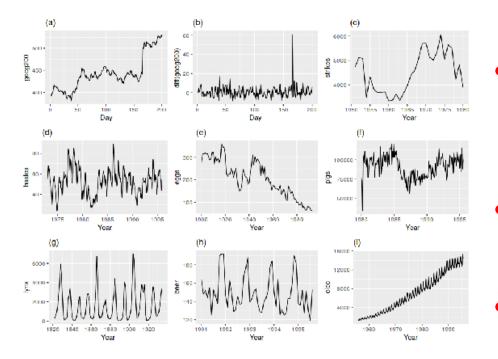

Which of these are stationary?




(e)







4

Which of these are stationary?

- Seasonal:
 - (d), (h) and (i)
- Trends & Changing Levels:
 - (a), (c), (e), (f), (i)
- Increasing Variance:

• (i)

- Stationary:
 - (b) and (g)

More details on ARIMA

- Understanding Differencing
 - https://otexts.com/fpp2/stationarity.html
- Understanding Autoregression
 - https://otexts.com/fpp2/AR.html
- Understanding Moving Averages
 <u>https://otexts.com/fpp2/MA.html</u>
- How to model with ARIMA

 https://otexts.com/fpp2/arima-r.html
- How to forecast with ARIMA
 - https://otexts.com/fpp2/arima-forecasting.html

Generalized ARIMA model

- A nonseasonal ARIMA model is classified as an ARIMA(p,d,q) model, where:
 - p = # of autoregressive terms,
 - d = # non-seasonal differences for stationary,
 - q = # lagged forecast errors in prediction equation.

ARIMA Models

- **ARIMA(0,1,0**) model
 - $\hat{Y}_{t} = \mu + Y_{t-1}$
- ARIMA(1,1,0) model
 - $\hat{Y}_{t} = \mu + Y_{t-1} + \phi_{1} (Y_{t-1} Y_{t-2})$
- ARIMA(0,1,1) model
 - $\hat{Y}_{t} = Y_{t-1} (1-\alpha)e_{t-1}$
- **ARIMA**(1,1,2) model
 - $\hat{Y}_{t} = Y_{t-1} + \varphi_1 (Y_{t-1} Y_{t-2}) \theta_1 e_{t-1} \theta_1 e_{t-1}$

More detailed examples

 <u>https://www.machinelearningplus.com/</u> <u>time-series/time-series-analysis-python/</u>