Introduction to Data Science GIRI NARASIMHAN, SCIS, FIU

Outliers

FROM JOHNSON & WICHERN, APPLIED MULTIVARIATE STATISTICAL ANALYSIS, 6TH ED

Canadian Hockey

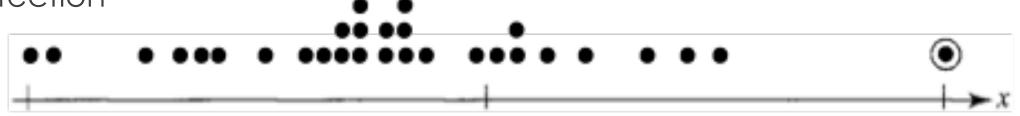
- Kids trained early; Leagues for age groups
- Most talented get on Major Jr A league team& compete for Memorial Cup
- What makes a top-notch hockey player?
- Soccer, Baseball, Cricket, Swimming, Gymnastics

OUTLIERS

matured. We all know that successful people come from hardy seeds. But do we know enough about the sunlight that warmed them, the soil in which they put down the roots, and the rabbits and lumberjacks they were lucky enough to avoid? This is not a book about tall trees. It's a book about forests—and hockey is a good place to start because the explanation for who gets to the top of the hockey world is a lot more interesting and complicated than it looks. In fact, it's downright peculiar.

	200223900:	3		ALPAN IN	ecorn:
	Jan Feb Mar Apr	May8 Jun 3 Jul 3 Aug3	2	Sep 1 Oct	1
	•	7.09		Nov	
CAP 5510	/ CGS 5166			Doc	1

No.	Name	Pos.	L/R	Height	Weight	Birth Date	Hometown
22	Tyler Ennis	С	L	5'9"	160	Oct. 6, 1989	Edmonton, AB
23	Jordan Hickmott	С	R	6'	183	Apr. 11, 1990	Mission, BC
25	Jakub Rumpel	RW	R	5'8"	166	Jan. 27, 1987	Hrnciarovce, SLO
28	Bretton Cameron	С	R	5'11"	168	Jan. 26, 1989	Didsbury, AB
36	Chris Stevens	LW	L	5'10"	197	Aug. 20, 1986	Dawson Creek, BC
3	Gord Baldwin	D	L	6'5"	205	Mar. 1, 1987	Winnipeg, MB
4	David Schlemko	D	L	6'1"	195	May 7, 1987	Edmonton, AB
5	Trever Glass	D	L	6'	190	Jan. 22, 1988	Cochrane, AB
10	Kris Russell	D	L	5'10"	177	May 2, 1987	Caroline, AB
18	Michael Sauer	D	R	6'3"	205	Aug. 7, 1987	Sartell, MN
24	Mark Isherwood	D	R	6'	183	Jan. 31, 1989	Abbotsford, BC
27	Shayne Brown	D	L	6'1"	198	Feb. 20, 1989	Stony Plain, AB
29	Jordan Bendfeld	D	R	6'3"	230	Feb. 9, 1988	Leduc, AB
31	Ryan Holfeld	G	L	5'11"	166	Jun. 29, 1989	LeRoy, SK
33	Matt Keetley	G	R	6'2"	189	Apr. 27, 1986	Medicine Hat,


No.	Player	Birth Date	Position
1	Marcel Gecov	Jan. 1, 1988	MF
2	Ludek Frydrych	Jan. 3, 1987	GK
3	Petr Janda	Jan. 5, 1987	MF
4	Jakub Dohnalek	Jan. 12, 1988	DF
5	Jakub Mares	Jan. 26, 1987	MF
6	Michal Held	Jan. 27, 1987	DF
7	Marek Strestik	Feb. 1, 1987	FW
8	Jiri Valenta	Feb. 14, 1988	MF
9	Jan Simunek	Feb. 20, 1987	DF
10	Tomas Oklestek	Feb. 21, 1987	MF
11	Lubos Kalouda	Feb. 21, 1987	MF
12	Radek Petr	Feb. 24, 1987	GK
13	Ondrej Mazuch	Mar. 15, 1989	DF
14	Ondrej Kudela	Mar. 26, 1987	MF
15	Marek Suchy	Mar. 29, 1988	DF
16	Martin Fenin	Apr. 16, 1987	FW
17	Tomas Pekhart	May 26, 1989	FW
18	Lukas Kuban	Jun. 22, 1987	DF
19	Tomas Cihlar	Jun. 24, 1987	DF
20	Tomas Frystak	Aug. 18, 1987	GK
21	Tomas Micola	Sep. 26, 1988	MF

Canadian Hockey Players

- Cutoff birthdate is the key
- Only accept kids who are not yet 10 on Jan 1
- ▶ January Kids matured almost one extra year over December kids

Detecting Outliers

- ▶ One SD variation should cover 68.3% in normal distribution
- ▶ Two SDs should cover 95.4% in normal distribution
- Visual detection

- ► Harder in multivariate case. Why?
 - May be univariate or multivariate outlier

Bivariate Outliers

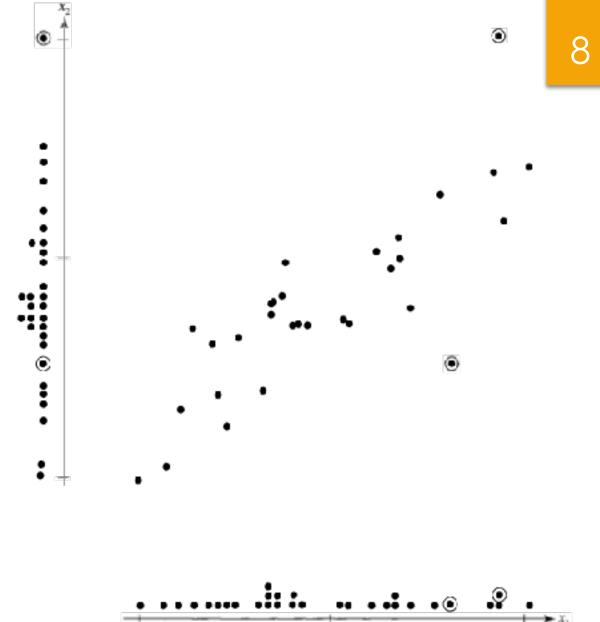


Figure 4.10 Two outliers; one univariate and one bivariate.

Multivariate Outliers

- Some outliers are hard to detect
- Look for large values of

$$(\mathbf{x}_j - \overline{\mathbf{x}})' \mathbf{S}^{-1} (\mathbf{x}_j - \overline{\mathbf{x}}).$$

	$x_{11} \\ x_{21}$	$x_{12} \\ x_{22}$	x_{1k} x_{2k}	x_{1p} x_{2p}	
X =		$:_{x_{j2}}$	x_{jk}	$:_{x_{jp}}$	
	x_{n1}	$:_{x_{n2}}$	x_{nk}	$:_{x_{np}}$	

- p variables
- n items/samples

Sample Covariance & Correlation

The sample covariance

$$s_{ik} = \frac{1}{n} \sum_{j=1}^{n} (x_{ji} - \bar{x}_i)(x_{jk} - \bar{x}_k)$$
 $i = 1, 2, ..., p, k = 1, 2, ..., p$

The sample correlation coefficient for the ith and kth variables is defined as

$$r_{ik} = \frac{\sum_{j=1}^{n} (x_{ji} - \bar{x}_i)(x_{jk} - \bar{x}_k)}{\sqrt{\sum_{j=1}^{n} (x_{ji} - \bar{x}_i)^2} \sqrt{\sum_{j=1}^{n} (x_{jk} - \bar{x}_k)^2}}$$

Basic Descriptive Statistics

Sample means Sample variances and covariances Sample correlations

Outlier detection

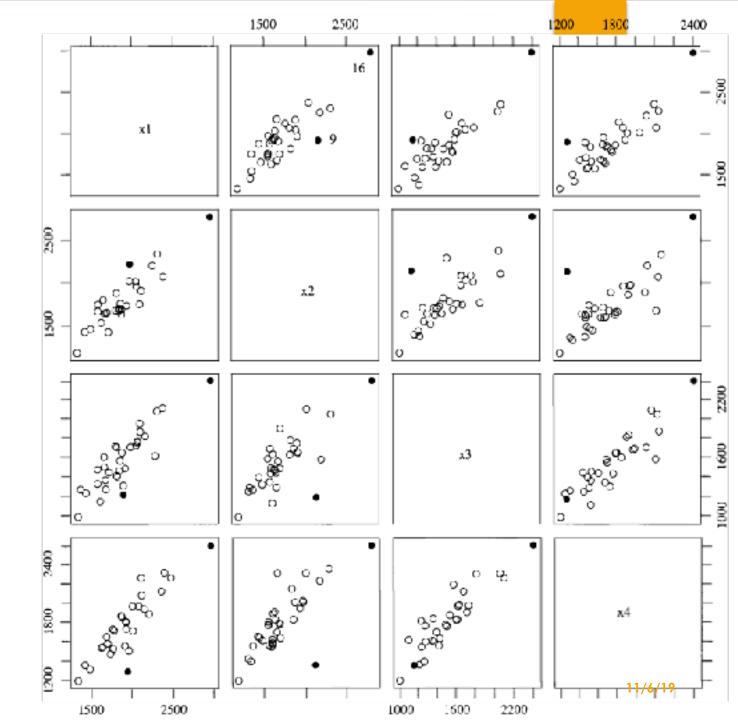
- Dot plots for each variable
- Scatter plot for each pair of variables
- Calculate z-values and examine for outliers

$$z_{jk} = (x_{jk} - \bar{x}_k)/\sqrt{s_{kk}}$$

Calculate gen sq distances & look for outliers

$$(\mathbf{x}_j - \overline{\mathbf{x}})'\mathbf{S}^{-1}(\mathbf{x}_j - \overline{\mathbf{x}}).$$

Spotting outliers from z-values


x_1	<i>x</i> ₂	x_3	<i>x</i> ₄	<i>x</i> ₅	z_1	z_2	<i>z</i> ₃	z_4	z_5
:	:	:	:	::	:	:	:	:	
1631	1528	1452	1559	1602	.06	15	.05	.28	12
1770	1677	1707	1738	1785	.64	.43	1.07	.94	.60
1376	1190	723	1285	2791	-1.01	-1.47	-2.87	73	4.57
1705	1577	1332	1703	1664	.37	.04	43	.81	.13
1643	1535	1510	1494	1582	.11	12	.28	.04	20
1567	1510	1301	1405	1553	21	22	56	28	31
1528	1591	1714	1685	1698	38	.10	1.10	.75	.26
1803	1826	1748	2746	1764	.78	1.01	1.23	(4.65)	.52
1587	1554	1352	1554	1551	13	05	35	.26	32
:	:	:	:	::	:	:	:	:	

Spotting outliers from Gen. Distance values

TABLE 4.4 FOUR MEASUREMENTS OF STIFFNESS WITH STANDARDIZED VALUES

x_1	<i>x</i> ₂	x_3	<i>x</i> ₄	Observation no.	z_1	z_2	z_2	24	d^2
1889	1651	1561	1778	1	1	3	.2	.2	.60
2403	2048	2087	2197	2	1.5	.9	1.9	1.5	5.48
2119	1700	1815	2222	3	.7	.2	1.0	1.5	7.62
1645	1627	1110	1533	4	8	4	-1.3	6	5.21
1976	1916	1614	1883	5	.2	.5	.3	.5	1.40
1712	1712	1439	1546	6	6	1	2	6	2.22
1943	1685	1271	1671	7	.1	2	8	2	4.99
2104	1820	1717	1874	8	.6	.2	.7	.5	1.49
2983	27 94	2412	2581	9	3.3	3.3	3.0	2.7	(12.26)
1745	1600	1384	1508	10	5	5	4	7	.77
1710	1591	1518	1667	11	6	5	.0	2	1.93
2046	1907	1627	1898	12	.4	.5	.4	.5	.46
1840	1841	1595	1741	13	2	.3	.3	.0	2.70
1867	1685	1493	1678	14	1	2	1	1	.13
1859	1649	1389	1714	15	1	3	4	0	1.08
1954	2149	1180	1281	16	.1	1.3	-1.1	-1.4	(16.85)
1325	1170	1002	1176	17	-1.8	-1.8	-1.7	-1.7	3.50
1419	1371	1252	1308	18	-1.5	1.2	8	-1.3	3.99
1828	1634	1602	1755	19	2	4	.3	.1	1.36
1725	1594	1313	1646	20	6	5	6	2	1.46
2276	2189	1547	2111	21	1.1	1.4	.1	1.2	9.90
1899	1614	1422	1477	22	0	4	3	8	5.06
1633	1513	1290	1516	23	8	7	7	6	.80
2061	1867	1646	2037	24	.5	.4	.5	1.0	2.54
1856	1493	1356	1533	25	2	8	5	6	4.58
1727	1412	1238	1469	26	6	-1.1	9	8	3.40
2168	1896	1701	1834	27	.8	.5	.6	.3	2.38
1655	1675	1414	1597	28	8	2	3	4	3.00
2326	2301	2065	2234	29	1.3	1.7	1.8	1.6 _11.46/1	6.28
1490	1382	1214	1284	30	-1.3	-1.2	-1.0	$-1.4^{\circ/1}$	2.58

Harder to spot them on scatter plots!

Other Transforms for Normality

HELPFUL TRANSFORMATIONS TO NEAR NORMALITY

Original Scale

Transformed Scale

1. Counts, y

$$\sqrt{y}$$

2. Proportions,
$$\hat{p}$$

$$\operatorname{logit}(\hat{p}) = \frac{1}{2} \log \left(\frac{\hat{p}}{1 - \hat{p}} \right)$$

(4-33)

3. Correlations, r

$$logit(\hat{p}) = \frac{1}{2} log \left(\frac{\hat{p}}{1 - \hat{p}} \right)$$

Fisher's $z(r) = \frac{1}{2} log \left(\frac{1 + r}{1 - r} \right)$

	100 m	200 m	400 m	800 m	1500 m	3000 m	Marathon
Country	(s)	(s)	(s)	(min)	(min)	(min)	(min)
Argentina	11.61	22.94	54.50	2.15	4.43	9.79	178.52
Australia	11.20	22.35	51.08	1.98	4.13	9.08	152.37
Austria	11.43	23.09	50.62	1.99	4.22	9.34	159.37
Belgium	11.41	23.04	52.00	2.00	4.14	8.88	157.85
Bermuda	11.46	23,05	53.30	2.16	4.58	9.81	169.98
Brazil	11.31	23.17	52.80	2.10	4.49	9.77	168.75
Burma	12.14	24.47	55.00	2.18	4.45	9.51	191.02
Canada	11.00	22.25	50.06	2.00	4.06	8.81	149.45
Chile	12.00	24.52	54.90	2.05	4.23	9.37	171.38
China	11.95	24.41	54.97	2.08	4.33	9.31	168.48
Colombia	11.60	24.00	53.26	2.11	4.35	9.46	165.42
Cook Islands	12.90	27.10	60.40	2.30	4.84	11.10	233.22
Costa Rica	11.96	24.60	58.25	2.21	4.68	10.43	171.80
Czechoslovakia	11.09	21.97	47.99	1.89	4.14	8.92	158.85
Denmark	11.42	23.52	53.60	2.03	4.18	8.71	151.75
Dominican Republic	11.79	24.05	56.05	2.24	4.74	9.89	203.88
Finland	11.13	22.39	50.14	2.03	4.10	8.92	154.23
France	11.15	22.59	51.73	2.00	4.14	8.98	155.27
German Democratic							
Republic	10.81	21.71	48.16	1.93	3.96	8.75	157.68
Federal Republic							
of Germany	11.01	22.39	49.75	1.95	4.03	8.59	148.53
Great Britain and							
Northern Ireland	11.00	22.13	50.46	1.98	4.03	8.62	149.72
Greece	11.79	24.08	54.93	2.07	4.35	9.87	182.20
Guatemala	11.84	24.54	56.09	2.28	4.86	10.54	215.08
Hungary	11.45	23.06	51.50	2.01	4.14	8.98	156.37
India	11.95	24.28	53.60	2.10	4.32	9.98	188.03
Indonesia	11.85	24.24	55.34	2.22	4.61	10.02	201.28
Ireland	11.43	23.51	53.24	2.05	4.11	8.89	149.38
Israel	11.45	23.57	54.90	2.10	4.25	9.37	160.48
Italy	11.29	23.00	52.01	1.96	3.98	8.63	151.82
Гарап	11.73	24.00	53.73	2.09	4.35	9.20	150.50
Kenya	11.73	23.88	52.70	2.00	4.15	9.20	181.05
Korea	11.96	24.49	55.70	2.15	4.42	9.62	164.65
Democratic People's							
Republic of Koren	12.25	25.78	51.20	1.97	4.25	9.35	179.17
Luxembourg	12.03	24.96	56.10	2.07	4.38	9.64	174.68
Malaysia	12.23	24.21	55.09	2.19	4.69	10.46	182.17
Mauritius	11.76	25.08	58.10	2.27	4.79	10.90	261.13
51 % exico	11.89	23.62	53.76	2.04	4.25	9.59	158.53
Netherlands	11.25	22.81	52.38	1.99	4.06	9.01	152.48

TABLE 1.9 NATIONAL TRACK RECORDS FOR WOMEN

Country	100 m (s)	200 m (s)	400 m (s)	800 m (min)	1500 m (min)	3000 m (min)	Marathon (min)
New Zealand	11.55	23.13	51.60	2.02	4.18	8.76	145.48
Norway	11.58	23.31	53.12	2.03	4.01	8.53	145.48
Papua New Guinea	12.25	25.07	56.96	2.24	4.84	10.69	233.00
Philippines	11.76	23.54	54.60	2.19	4.60	10.16	200.37
Poland	11.13	22.21	49.29	1.95	3.99	8.97	160.82
Portugal	11.81	24.22	54.30	2.09	4.16	8.84	151.20
Rumania	11.44	23.46	51.20	1.92	3.96	8.53	165.45
Singapore	12.30	25.00	55.08	2.12	4.52	9.94	182.77
Spain	11.80	23.98	53.59	2.05	4.14	9.02	162.60
Sweden	11.16	22.82	51.79	2.02	4.12	8.84	154.48
Switzerland	11.45	23.31	53.11	2.02	4.07	8.77	153.42
Taiwan	11.22	22.62	52.50	2.10	4.38	9.63	177.87
Thailand	11.75	24.46	55.80	2.20	4.72	10.28	168.45
Turkey	11.98	24.44	56.45	2.15	4.37	9.38	201.08
U.S.A.	10.79	21.83	50.62	1.96	3.95	8.50	142.72
U.S.S.R.	11.06	22.19	49.19	1.89	3.87	8.45	151.22
Western Samoa	12.74	25.85	58.73	2.33	5.81	13.04	306.00

Source: LAAF/ATFS Truck and Field Statistics Handbook for the 1984 Los Angeles Olympics.

Hypothesis Testing

HTTPS://365DATASCIENCE.COM/WP-CONTENT/UPLOADS/2019/05/365-DATA-SCIENCE_HYPOTHESIS-TESTING-CHEAT-SHEET.PDF

Regression Analysis

FORM OF PREDICTIVE MODELLING

- A **DEPENDENT** (TARGET) AND
- INDEPENDENT VARIABLE (S) (PREDICTOR).
- USED FOR FORECASTING, TIME SERIES MODELLING AND FINDING <u>CAUSAL</u> <u>EFFECT RELATIONSHIP</u>
 - E.g., relationship between driver age and # of road accidents by driver

Regression Analysis

Linear Regression

$$a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$
$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

Evaluate model using R-squared measure

$$R^2 = 1 - \frac{\text{MSE(model)}}{\text{MSE(baseline)}}$$

Giri Narasimhan

Logistic Regression

- Logistic regression used to find probability of event=Success and event=Failure
- Use logistic regression when dependent variable is binary (0/1, True/False, Yes/No)
- widely used for classification problems

Giri Narasimhan 6/26/18

Other types of regression

- ► Non-linear/polynomial regression
- Stepwise
- Ridge
- Lasso
- ElasticNet
- ...

https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/

Giri Narasimhan 6/26/18