Introduction to Data Science GIRI NARASIMHAN, SCIS, FIU

Data as Matrices

3

Singular Value Decomposition

►U and V are unitary $\Box UU^* = I$

diagonal weight matrix

$$\mathbf{A}_{(m \times k)} = \mathbf{U}_{(m \times m)(m \times k)(k \times k)} \mathbf{A}_{(k \times k)} \mathbf{V}_{(k \times k)}$$

SVD: Rotation-Scaling-Rotation

$\begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$

Giri Narasimhan

 $\mathbf{U} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ $\boldsymbol{\Sigma} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ $\mathbf{V}^* = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \end{bmatrix}$

6/26/18

The Unitary Matrices

$$\begin{aligned} \mathbf{U}\mathbf{U}^* &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_4 \\ \mathbf{V}\mathbf{V}^* &= \begin{bmatrix} 0 & 0 & \sqrt{0.2} & 0 & -\sqrt{0.8} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & \sqrt{0.2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{0.2} \end{bmatrix} = \mathbf{I}_5 \end{aligned}$$

SVD Approximations

 $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$

Giri Narasimhan

Giri Narasimhan

[0 0 3 0 0][0 0 0 0 0][0 2 0 0 0]

 $M' = [0 \ 0 \ 0 \ 0]$

Approximations

Approximations

$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

$$M' = [0 0 0 0 0]$$
$$[0 0 3 0 0]$$
$$[0 0 0 0 0]$$
$$[0 2 0 0 0]$$

Giri Narasimhan

м

Approximations

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

$$M'' = [1 0 0 0 2]$$

$$[0 0 3 0 0]$$

$$[0 0 0 0 0]$$

$$[0 2 0 0 0]$$

Giri Narasimhan

12

Non-negative matrix factorization

Facial Recognition Problem

- Work of Lee and Seung (1999)
- Database of 2429 faces (19 X 19 pixels)
- Want to learn eigenfaces
 - Basis faces for all faces
 - □ All faces are linear combinations of basis faces

Matrix Factorization Methods

- Matrix Factorization Techniques
 - PCAAllows negative weights
 - NMF Allow only non-negative weights

VQ and PCA

NMF

Original

=

Objective Function & Update Functions

Minimize:

Works well for large DB

Sparsity

 NMF basis and encodings are sparse & contain large number of vanishing coefficients
 Not true for VQ and PCA

Basis images are non-global

Related Work

Nonnegative Rank (Gregory and Pullman, '83)

Survey applns (Cohen & Rothblum, '93)

- Approx. Factorization (Paatero & Tapper, '94)
- Images (Lee & Seung '99, Nature, 401 (6755))

Text Mining: pLSI (Hofmann, SIGIR '99)

- Latent Dirichlet allocation (LDA) (Blei, Ng, Jordan, JMLR '03)
- Algorithms (Lee & Seung NIPS '00)

Applications

Clustering

When $V = HH^{T}$ (and HSH^{T}), we get

K-means and Laplacian-based spectral clustering (and their weighted versions)

When V represents bipartite graphs

- □ Simultaneous row & column clustering
- C. Ding, X. He, H.D. Simon (2005). <u>"On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering"</u>. Proc. SIAM Int'l Conf. Data Mining, pp. 606-10. '05

Grolier encyclopedia – 30991 articles, vocabulary 15276 words

court government council culture supreme constitutional rights justice	president served governor secretary senate congress presidential elected	
flowers leaves plant perennial flower plants growing annual	disease behavior glands contact symptoms skin pain infection	×

Encyclopedia entry: "Constitution of the United States"

president (148) congress (124) power (120) united (104) constitution (81) amendment (71) government (57) law (49)

metal process method paper ... glass copper lead steel

person example time people ... rules lead leads law

NMF Applications & Interpretation

Audio Signal Processing

Smaragdis and Brown '03; Smaragdis, Raj, Shashanka, NIPS '06

X = W H

Recommender Systems

- Social recommendation in social network service (Ma, Yang, Lyu, King, ICIKM '08.)
- Content-based image tagging in image processing (Ning, Cheung, Guoping, Xiangyang, IEEE Trans PAMI, '11),
- QoS prediction in service computing (Wu et al. IEEE TrSMCS '13; Zheng, et al., IEEE TrSC '13)
- Video re-indexing (Weng et al., ACM Trans. MCCA, '12)
- Mobile-user tracking in wireless sensor networks (Pan, et al., IEEE TPAMI, '12)

Modeling Latent Factors

- Assume rows of V represent observations or samples and columns represent features
 - $\Box \lor = \lor H$
 - Rows of W represent samples and columns of H represent features
 - Columns of W and rows of H represent latent variables or hidden factors

Supervised NMF

NMF is an unsupervised process

Supervised NMF using co-occurrence info has been studied by Cai, Y., Gu, H., & Kenney, T. (2017). Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization. *Microbiome*, 5(1), 110.

28

Machine Learning

Machine Learning

- Unsupervised Learning
 Clustering
 - PCA
- Supervised Learning
 - □ SVM

 - □ kNN

Data-driven Machine Learning