
Greedy Algorithms
• Given a set of activities (si, fi), we want to 

schedule the maximum number of non-overlapping 
activities.

• GREEDY-ACTIVITY-SELECTOR (s, f)
1. n = length[s]
2. S = {a1}
3. i = 1
4. for m = 2 to n do
5. if sm is not before fi then
6. S = S U {am}
7. i = m
8. return S
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Dynamic Programming
• Activity Problem Revisited: Given a set of n

activities ai = (si, fi), we want to schedule the 
maximum number of non-overlapping 
activities.

• New Approach:
– Observation: To solve the problem on activities 

An = {a1,…,an}, we notice that either 
• optimal solution does not include an (Problem on  An-1)
• optimal solution includes an (Problem on Ak, which is 

equal to An without activities that overlap an, I.e., ak is 
the last activity that finishes before an starts.)

2/22/05 2COT 5993 (Lec 13)



An efficient implementation
• Why not solve the problem on A1,…,An-1,An?
• In what order to solve them?
• Is the problem on A1 easy? 

– YES, trivial
• Can the optimal solutions to the problems on 

A1,…,Ai help to solve the problem on Ai+1?
– YES! Either:

• optimal solution does not include ai+1 (Problem on Ai)
• optimal solution includes ai+1 (you are left with a 

problem on Ak, which is equal to Ai without activities 
that overlap ai+1, i.e., ak is the last activity that 
finishes before ai+1 starts.)
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Dynamic Programmming: Activity Selection
• Select the maximum number of non-overlapping 

activities from a set of n activities A = {a1, …, an} 
(sorted by finish times).

• Identify “easier” subproblems to solve.
A1 = {a1}
A2 = {a1, a2}
A3 = {a1, a2, a3}, …,
An = A

• Subproblems: Select the max number of non-
overlapping activities from Ai
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Dynamic Programmming: Activity Selection
• Solving for An solves the original problem.
• Solving for A1 is easy.
• If you have optimal solutions S1, …, Si-1 for 

subproblems on A1, …, Ai-1, how to compute Si?
• The optimal solution for Ai either

– Case1: does not include ai or
– Case 2: includes ai

• Case 1: 
– Si = Si-1

• Case 2:
– Si = Sk U {ai}, for some k < i. 
– How to find such a k? We know that ak cannot overlap ai.
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Dynamic Programmming: Activity Selection
• DP-ACTIVITY-SELECTOR (s, f)

1. n = length[s]
2.N[1] = 1        // number of activities in S1
3.F[1] = 1        // last activity in S1
4.for i = 2 to n do
5. let k be the last activity finished before si
6. if (N[i-1] > N[k]) then  // Case 1
7. N[i] = N[i-1]
8. F[i] = F[i-1]
9. else // Case 2
10. N[i] = N[k] + 1
11. F[i] = i

How to output Sn?
Backtrack!

Time Complexity?
O(n lg n)
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Dynamic Programming Features
• Identification of subproblems
• Recurrence relation for solution of 

subproblems
• Overlapping subproblems (sometimes)
• Identification of a hierarchy/ordering

of subproblems
• Use of table to store solutions of 

subproblems (MEMOIZATION)
• Optimal Substructure
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Longest Common Subsequence
S1 = CORIANDER CORIANDER
S2 = CREDITORS CREDITORS

Longest Common Subsequence(S1[1..9], S2[1..9]) = CRIR

Subproblems:
– LCS[S1[a..b], S2[c..d]], for all a, b, c, and d
– LCS[S1[1..i], S2[1..j]], for all i and j [BETTER]

• Recurrence Relation:
– LCS[i,j] = LCS[i-1, j-1] + 1,  if S1[i] = S2[j])

LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise
• Table (m X n table) 
• Hierarchy of Solutions?
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LCS Problem
LCS_Length (X, Y ) 
1. m length[X] 
2. n Length[Y] 
3. for i = 1 to m 
4. do c[i, 0] 0 
5. for j =1 to n 
6. do c[0,j] 0 
7. for i = 1 to m 
8.       do for j = 1 to n 
9.            do if ( xi = yj ) 
10.                  then c[i, j] c[i-1, j-1] + 1 
11.                       b[i, j] “ ⎫”
12.                  else if c[i-1, j] c[i, j-1] 
13.                           then c[i, j] c[i-1, j] 
14.                           b[i, j] “↑”
15.                      else 
16.                           c[i, j] c[i, j-1] 
17.                           b[i, j] “←”
18. return 



LCS Example

2/22/05 10COT 5993 (Lec 13)



Dynamic Programming vs. Divide-&-conquer
• Divide-&-conquer works best when all subproblems are

independent. So, pick partition that makes algorithm most 
efficient & simply combine solutions to solve entire problem. 

• Dynamic programming is needed when subproblems are 
dependent; we don’t know where to partition the problem. 
For example, let S1= {ALPHABET}, and S2 = {HABITAT}. 
Consider the subproblem with S1′ = {ALPH}, S2′ = {HABI}.
Then, LCS (S1′, S2′) + LCS (S1-S1′, S2-S2′) ≠ LCS(S1, S2)

• Divide-&-conquer is best suited for the case when no 
“overlapping subproblems” are encountered. 

• In dynamic programming algorithms, we typically solve each 
subproblem only once and store their solutions. But this is 
at the cost of space.
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Dynamic programming vs Greedy
1. Dynamic Programming solves the sub-problems bottom up. 

The problem can’t be solved until we find all solutions of 
sub-problems. The solution comes up when the whole 
problem appears. 
Greedy solves the sub-problems from top down. We first 
need to find the greedy choice for a problem, then reduce 
the problem to a smaller one. The solution is obtained when 
the whole problem disappears.

2. Dynamic Programming has to try every possibility before 
solving the problem. It is much more expensive than greedy. 
However, there are some problems that greedy can not 
solve while dynamic programming can. Therefore, we first 
try greedy algorithm. If it fails then try dynamic 
programming. 
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