
Greedy Algorithms
• Given a set of activities (si, fi), we want to

schedule the maximum number of non-overlapping
activities.

• GREEDY-ACTIVITY-SELECTOR (s, f)
1. n = length[s]
2. S = {a1}
3. i = 1
4. for m = 2 to n do
5. if sm is not before fi then
6. S = S U {am}
7. i = m
8. return S

2/22/05 1COT 5993 (Lec 13)

Dynamic Programming
• Activity Problem Revisited: Given a set of n

activities ai = (si, fi), we want to schedule the
maximum number of non-overlapping
activities.

• New Approach:
– Observation: To solve the problem on activities

An = {a1,…,an}, we notice that either
• optimal solution does not include an (Problem on An-1)
• optimal solution includes an (Problem on Ak, which is

equal to An without activities that overlap an, I.e., ak is
the last activity that finishes before an starts.)

2/22/05 2COT 5993 (Lec 13)

An efficient implementation
• Why not solve the problem on A1,…,An-1,An?
• In what order to solve them?
• Is the problem on A1 easy?

– YES, trivial
• Can the optimal solutions to the problems on

A1,…,Ai help to solve the problem on Ai+1?
– YES! Either:

• optimal solution does not include ai+1 (Problem on Ai)
• optimal solution includes ai+1 (you are left with a

problem on Ak, which is equal to Ai without activities
that overlap ai+1, i.e., ak is the last activity that
finishes before ai+1 starts.)

2/22/05 3COT 5993 (Lec 13)

Dynamic Programmming: Activity Selection
• Select the maximum number of non-overlapping

activities from a set of n activities A = {a1, …, an}
(sorted by finish times).

• Identify “easier” subproblems to solve.
A1 = {a1}
A2 = {a1, a2}
A3 = {a1, a2, a3}, …,
An = A

• Subproblems: Select the max number of non-
overlapping activities from Ai

2/22/05 4COT 5993 (Lec 13)

Dynamic Programmming: Activity Selection
• Solving for An solves the original problem.
• Solving for A1 is easy.
• If you have optimal solutions S1, …, Si-1 for

subproblems on A1, …, Ai-1, how to compute Si?
• The optimal solution for Ai either

– Case1: does not include ai or
– Case 2: includes ai

• Case 1:
– Si = Si-1

• Case 2:
– Si = Sk U {ai}, for some k < i.
– How to find such a k? We know that ak cannot overlap ai.

2/22/05 5COT 5993 (Lec 13)

Dynamic Programmming: Activity Selection
• DP-ACTIVITY-SELECTOR (s, f)

1. n = length[s]
2.N[1] = 1 // number of activities in S1
3.F[1] = 1 // last activity in S1
4.for i = 2 to n do
5. let k be the last activity finished before si
6. if (N[i-1] > N[k]) then // Case 1
7. N[i] = N[i-1]
8. F[i] = F[i-1]
9. else // Case 2
10. N[i] = N[k] + 1
11. F[i] = i

How to output Sn?
Backtrack!

Time Complexity?
O(n lg n)

2/22/05 6COT 5993 (Lec 13)

Dynamic Programming Features
• Identification of subproblems
• Recurrence relation for solution of

subproblems
• Overlapping subproblems (sometimes)
• Identification of a hierarchy/ordering

of subproblems
• Use of table to store solutions of

subproblems (MEMOIZATION)
• Optimal Substructure

2/22/05 7COT 5993 (Lec 13)

Longest Common Subsequence
S1 = CORIANDER CORIANDER
S2 = CREDITORS CREDITORS

Longest Common Subsequence(S1[1..9], S2[1..9]) = CRIR

Subproblems:
– LCS[S1[a..b], S2[c..d]], for all a, b, c, and d
– LCS[S1[1..i], S2[1..j]], for all i and j [BETTER]

• Recurrence Relation:
– LCS[i,j] = LCS[i-1, j-1] + 1, if S1[i] = S2[j])

LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise
• Table (m X n table)
• Hierarchy of Solutions?

2/22/05 8COT 5993 (Lec 13)

2/22/05 9COT 5993 (Lec 13)

LCS Problem
LCS_Length (X, Y)
1. m length[X]
2. n Length[Y]
3. for i = 1 to m
4. do c[i, 0] 0
5. for j =1 to n
6. do c[0,j] 0
7. for i = 1 to m
8. do for j = 1 to n
9. do if (xi = yj)
10. then c[i, j] c[i-1, j-1] + 1
11. b[i, j] “ ⎫”
12. else if c[i-1, j] c[i, j-1]
13. then c[i, j] c[i-1, j]
14. b[i, j] “↑”
15. else
16. c[i, j] c[i, j-1]
17. b[i, j] “←”
18. return

LCS Example

2/22/05 10COT 5993 (Lec 13)

Dynamic Programming vs. Divide-&-conquer
• Divide-&-conquer works best when all subproblems are

independent. So, pick partition that makes algorithm most
efficient & simply combine solutions to solve entire problem.

• Dynamic programming is needed when subproblems are
dependent; we don’t know where to partition the problem.
For example, let S1= {ALPHABET}, and S2 = {HABITAT}.
Consider the subproblem with S1′ = {ALPH}, S2′ = {HABI}.
Then, LCS (S1′, S2′) + LCS (S1-S1′, S2-S2′) ≠ LCS(S1, S2)

• Divide-&-conquer is best suited for the case when no
“overlapping subproblems” are encountered.

• In dynamic programming algorithms, we typically solve each
subproblem only once and store their solutions. But this is
at the cost of space.

2/22/05 11COT 5993 (Lec 13)

Dynamic programming vs Greedy
1. Dynamic Programming solves the sub-problems bottom up.

The problem can’t be solved until we find all solutions of
sub-problems. The solution comes up when the whole
problem appears.
Greedy solves the sub-problems from top down. We first
need to find the greedy choice for a problem, then reduce
the problem to a smaller one. The solution is obtained when
the whole problem disappears.

2. Dynamic Programming has to try every possibility before
solving the problem. It is much more expensive than greedy.
However, there are some problems that greedy can not
solve while dynamic programming can. Therefore, we first
try greedy algorithm. If it fails then try dynamic
programming.

2/22/05 12COT 5993 (Lec 13)

	Greedy Algorithms
	Dynamic Programming
	An efficient implementation
	Dynamic Programmming: Activity Selection
	Dynamic Programmming: Activity Selection
	Dynamic Programmming: Activity Selection
	Dynamic Programming Features
	Longest Common Subsequence
	LCS Problem
	LCS Example
	Dynamic Programming vs. Divide-&-conquer
	Dynamic programming vs Greedy

