
Number-Theoretic Algorithms
• What are the factors of 

326,818,261,539,809,441,763,169?
• There is no known efficient algorithm.
• What is the greatest common divisor of 

835,751,544,820 and 391,047,152,188?
• Euclid’s algorithm solves this efficiently.
• These two facts are the basis for the RSA 

public-key cryptosystem.
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Basic Number Theory
• Divisibility

– 3|12  “3 divides 12”, “12 is a multiple of 3”
• Factors

– Factors (non-trivial divisors) of 20 are 2,4,5,10
• Primes

– 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, …
– 1 is not prime
– There are infinitely many primes.
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Unique Factorization
• Divisibility by a prime

– If p is prime and p | ab, then p | a or p | b.
• Unique factorization

– Every integer has a unique factorization as a 
product of primes.

– 5280 = 25 31 51 111
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Division Theorem
• For any integer a and any positive integer n, 

there are unique integers q and r, such that 
0 ≤ r < n and a = qn+r.

• Quotient q and remainder r
• Notation: r = a mod n
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Greatest Common Divisors
• Any two integers, not both 0, have a 

greatest common divisor (gcd).
• gcd(24,30)=6
• a, b are relatively prime if gcd(a,b)=1.
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Euclid’s Algorithm
• For any nonnegative integer a and any 

positive integer b,
gcd(a,b) = gcd (b, a mod b)

• Euclid’s algorithm (ca. 300 B.C.)
EUCLID(a,b)
{
if (b = 0) then return a
else return EUCLID(b, a mod b)

}
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Example
EUCLID(120, 23)
= EUCLID(23, 5)
= EUCLID(5, 3)
= EUCLID(3, 2)
= EUCLID(2, 1)
= EUCLID(1, 0)
= 1

So 120 and 23 are relatively prime.
2/24/05 7COT 5993 (Lec 14)



Extended Euclid’s Algorithm
• Theorem 31.2: gcd(a,b) is the smallest 

positive integer in the set {ax+by : x,y є ℤ}

• Euclid’s Algorithm can calculate x and y such 
that ax+by = gcd(a,b).
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Example
• 120 / 23 = 5 r 5

– So 5 = 120-5·23
• 23 / 5 = 4 r 3

– So 3 = 23-4·5 = 23–4·(120-5·23) = -4·120+21·23
• 5 / 3 = 1 r 2

– So 2 = 5-1·3 = (120-5·23)-1·(-4·120+21·23)
= 5·120-26·23

• 3 / 2 = 1 r 1
– So 1 = 3-1·2 = (-4·120+21·23)-1·(5·120-26·23)

= -9·120+47·23
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Modular Arithmetic
• We do all arithmetic modulo n.
• Powers of 3

– 1,3,9,27,81,243,…
• Powers of 3 modulo 7

– 1,3,2,6,4,5,1,3,2,6,4,5,…
• Fermat’s Theorem:

– If p is prime and 1 ≤ a < p, then ap-1 = 1 (mod p) .
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Multiplicative Inverses
• If a is relatively prime to n, then there 

exists x such that ax = 1 (mod n).
• x is the multiplicative inverse of a (mod n).
• We can find x using the Extended Euclid’s 

Algorithm.
– ax+ny=1 implies that ax = 1 (mod n)

• Example
– The multiplicative inverse of 23 (mod 120) is 47, 

since 1 = -9·120 + 47·23.
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Public Key Cryptography
• Goal: Allow users to communicate securely 

even if they don’t share a secret key.
• Each user publishes a public key and also 

keeps a private key secret.
• Anyone can encrypt a message using Alice’s 

public key, but only she can decrypt it, using 
her private key.

• Also, Alice can “sign” a message by 
encrypting it with her private key.
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The RSA Cryptosystem
• Randomly choose two large primes p and q.

– p = 835,751,544,821     q = 391,047,152,189
– (Really p and q should be about 150 digits long.)

• Let n = pq.
– n = 326,818,261,539,809,441,763,169

• Idea: Factoring n is hard!
• Compute φ(n) = (p-1)(q-1).

– φ(n) = 326,818,261,538,582,643,066,160
– (φ(n) gives the number of integers less than n 

that are relatively prime to n.)
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RSA Cryptosystem, continued
• Choose e relatively prime to φ(n).

– e = 3
• Use Extended Euclid’s Algorithm to compute 

d, the multiplicative inverse of e (mod φ(n)).
– d = 217,878,841,025,721,762,044,107

• (e,n) is the RSA public key.
• (d,n) is the RSA private key.
• Encryption: E(M) = Me mod n.
• Decryption: D(C) = Cd mod n.
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Fast Exponentiation
• Since d is huge, Cd mod n cannot be computed 

naïvely.
• We can do it in 2log d multiplications:
• fun exp(C, d, n) =

if d = 0 then 1
else if even(d) then

exp(C*C mod n, d/2, n)
else C*exp(C, d-1, n) mod n
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Correctness of RSA
• Encrypting and decrypting M gives

D(E(M)) = E(D(M)) = Med (mod n).
• By the choice of e and d, we have

ed = 1 + k(p-1)(q-1), for some k.
• Calculating mod p, if M ≠ 0 (mod p), then

Med = M(Mp-1)k(q-1) = M(1)k(q-1) = M (mod p) 
using Fermat’s Theorem.

• And, of course, if M = 0 (mod p), then again
Med = M (mod p).
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Correctness of RSA, Continued
• A similar calculation shows that

Med = M (mod q).
• Hence we have

p | Med – M   and   q | Med – M
• Because gcd(p,q)=1, this implies that

pq | Med - M
• So Med = M (mod n).
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Example
• n = 326,818,261,539,809,441,763,169
• e = 3
• d = 217,878,841,025,721,762,044,107
• M = 12,345,678,901,234,567,890
• Encryption: E(M) = Me mod n
• E(M) = 268,102,434,874,902,796,719,062
• Decryption: D(C) = Cd mod n
• D(E(M)) = 12,345,678,901,234,567,890
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Finding Big Primes
• Prime Number Theorem: the number of 

primes less than or equal to n is about n/ln n.
• Hence a random 512-bit number is prime 

with probability about 1/ln 2512 ≈ 1/355.
• So random search will work well, if we can 

test for primality.
• Randomized tests: For example, if an-1 ≠ 1 

(mod n), then n cannot be prime.
• Agrawal, Kayal and Saxena found a 
polynomial-time algorithm in 2002!
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Factoring Big Integers
• Many very sophisticated algorithms have 

been developed.
• But all take exponential time.
• Today, factoring an arbitrary 300-digit 

integer remains infeasible (apparently).
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