Graphs
- Graph G(V E)

-V Vertices or Nodes

- E Edges or Links: pairs of vertices
* D Directed vs. Undirected edges
*+ Weighted vs Unweighted

» Graphs can be augmented to store extra info (e.g.,
city population, oil flow capacity, etc.)

* Paths and Cycles

+ Subgraphs G'(V',E'), where V' is a subset of V and E’
is a subset of E

» Trees and Spanning trees

COT 5993 (Lec 15) 3/1/05 1

{23 s
1'_-:~j:+-|2|—-Hsi/1 1o 1 0 0 1
2 {1] s 3] P{a]/] 2l 011
3[Rl P o UL S
4| =2] 5] 4-{3]/] dlo 1 10 1
Sl=4| 1] P2]/] 50 0 D
(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five
vertices and seven edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix rep-
resentation of G.

-»1 2_.|.,+| 41/]

o = = O Lh
—_—
L

_0 O O =

e R e Y e T s Y o T e N N
v e T e T e O o Y
= 0D O o S oL

o T T N S O I

L R e

|~
=
=
ek

—~
=]
oS
—
=
—
—
L]
e

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices
and eight edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.

COT 5993 (Lec 15) 3/1/05

Graph Traversal

+ Visit every vertex and every edge.

» Traversal has to be systematic so that no
vertex or edge is missed.

- Just as tree traversals can be modified to
solve several tree-related problems, graph
traversals can be modified to solve several
problems.

COT 5993 (Lec 15) 3/1/05 3

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they arc shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Vertices are timestamped by discovery time/finishing time.

COT 5993 (Lec 15) 3/1/05

DFS(6)

1. For each vertex u € V[G] do
2. color[u] « WHITE
3. n[u] « NIL
4. Time <0 DFS-VISIT(u)
5. For each vertex u € V[G] do 1. VisitVertex(u)
6. if color[u]= WHITE then |2 cColor[u] «- GRAY
7. DFS-VISIT(u) 3. Time <« Time +1
4. d[u] < Time
5. for each v € Adj[u] do
6. VisitEdge(u,v)
Depth 7. if (v = n[u]) then
F| rSt 8. if (color[v] = WHITE) then
9. n[v] < u
Search 10. DFS-VISIT(v)
11. color[u] <~ BLACK
12. F[u] <« Time < Time + 1

COT 5993 (Lec 15) 3/1/05 5

COT 5993 (L«

(a)

(b)

1 2345678 91011121314 1516
6CCOoEDNwWwz s @ 0v)weyd

)

()

Figure 22.5 Properties of depth-first search. (a) The result of a depth-first search of a directed
graph. Vertices are timestamped and edge types are indicated as in Figure 22.4. (b) Intervals for
the discovery time and finishing time of each vertex correspond to the parenthesization shown. Each
rectangle spans the interval given by the discovery and finishing times of the corresponding vertex.
Tree edges are shown. If two intervals overlap, then one is nested within the other, and the vertex
corresponding to the smaller interval is a descendant of the vertex corresponding to the larger. (c) The
graph of part (a) redrawn with all tree and forward edges going down within a depth-first tree and all
back edges going up from a descendant to an ancestor.

(h)

(i) Q

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. Within each vertex u is shown d[u]. The queue @ is shown at the beginning
of each iteration of the while loop of lines 10-18. Vertex distances are shown next to vertices in the
queue,

COT 5993 (Lec 15) 3/1/05

Breadth
First
Search

COT 5993 (Lec 15)

BFS(6G,s)

VO NGC Ok W=

For each vertex u eV[G] - {s} do
color[u] < WHITE
d[u] <« «
n[u] « NIL
Color[u] « GRAY
D[s] <« O
n[s] <« NIL
QD
ENQUEVUE(Q,s)

10 While Q # ® do

11.

12.
13.
14,
15.
16.
17.
18.
19.
20.

u < DEQUEVE(Q)
VisitVertex(u)
for each v € Adj[u] do
VisitEdge(u,v)
if (color[v] = WHITE) then
color[v] < GRAY
d[v] < d[u]+1
n[v] < u
ENQUEUE(Q,v)
color[u] « BLACK

Figure 14.33
An activity-node graph

el

COT 5993 (Lec 15) 3/1/05 9

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.30A

A topological sort. The conventions are the same as those in Figure 14.21
(continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.30B

A topological sort. The conventions are the same as those in
Figure 14.21.

) O

W & W ® @
(@S 5 6
0 @

W oW W W w W
& W 7 & @ s

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.31A

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).

M v VY (=Y vy [T VA 4 —_——

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.31B

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.

UNU T YYUVY LU v

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.34
An event-node graph

COT 5993 (Lec 15) 3/1/05 14

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.35
Earliest completion times

3

5 C3
0
0 3
i e
0
a E 1

COT 5993 (Lec 15)

G 6 E
Oas-COinaO
0 0

L g
Oy CanaOans Cana O
0

3

5

T

—e(s)"

3/1/05

10

15

Data Structures & Problem Solving using JAVA/2E

Mark Allen Weiss © 2002 Addison Wesley

Figure 14.36
Latest completion times

COT 5993 (Lec 15) 3/1/05 16

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.37

Earliest completion time, latest completion time, and slack (additional edge
item)

COT 5993 (Lec 15) 3/1/05 17

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Connectivity

* A (simple) undirected graph is connected if there
exists a path between every pair of vertices.

» If a graph is not connected, then G'(V',E) is a
connected component of the graph G(V,E) if V'is a
maximal subset of vertices from V that induces a
connected subgraph. (What is the meaning of
maximal?)

* The connected components of a graph correspond
to a partition of the set of the vertices. (What is
the meaning of partition?)

* How to compute all the connected components?

- Use DFS or BFS.

COT 5993 (Lec 15) 3/1/05 18

Minimum Spanning Tree

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown,
and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This
minimum spanning tree is not unique: removing the edge (b, ¢) and replacing it with the edge (a, h)
yields another spanning tree with weight 37.

COT 5993 (Lec 15) 3/1/05

19

COT 5993 (Lec 15)

Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The edges are considered by the algorithm in sorted order by
weight. An arrow points to the edge under consideration at each step of the algorithm. If the edge
joins two distinct trees in the forest, it is added to the forest, thereby merging the two trees.

3/1/05

20

COT 5993 (Lec 15)

3/1/05

21

Minimum Spanning Tree

MST-KRUSKAL(G, w)
A0
for each vertex v € V|G|

do MAKE-SET(v)
sort the edges of £/ by nondecreasing weight w
for each edge (u,v) € E, in order by nondecreasing weigh

do if FIND-SET(u) # FIND-SET(v)

then A +— AU {(u,v)}
UNION(u, v)

e LB S g B0 I 1=

return A

22

COT 5993 (|

(a)

(e)

(® ()

(1

Figure23.5 The execution of Prim’s algorithm on the graph from Figure 23.1, The root vertex is a.
Shaded edges are in the tree being grown, and the vertices in the tree are shown in black. At each
step of the algorithm, the vertices in the tree determine a cut of the graph, and a light edge crossing
the cut is added to the tree. In the second step, for example, the algorithm has a choice of adding
either edge (b, ¢) or edge (a, h) to the tree since both are light edges crossing the cut.

23

COT 5993

MST-KRUSKAL(G, w)

A
2
3
4.
5.
6
&
8
9

A+—10
for each vertex v € V[G]

do MAKE-SET(v)
sort the edges of E by nondecreasing weight w
for each edge (u,v) € E, in order by nondecreasing weigh

do if FIND-SET(u) # FIND-SET(v)

then A — AU {{u,v)}
UNION(u, v)

return A

MST-PrIM(G, w, 1)

= o Ll e ol Ll e

— O

Q — V(o]
for each v € ()
do keylu] — oo

keylr] «+ 0O
mr] «— NIL
while Q # 0

do u +— EXTRACT-MIN(Q)

for each v € Adj|u]
do if v € Q) and w(u,v) < key|v]
then 7[v] — u
key[v] «— w(u,v)

24

Proof of Correctness: MST Algorithms

(a)

Figure 23.2 Two ways of viewing a cut (S, V — S) of the graph from Figure 23.1. (a) The vertices
in the set S are shown in black, and those in VV — § are shown in white. The edges crossing the cut are
those connecting white vertices with black vertices. The edge (d, c) is the unique light edge crossing
the cut. A subset A of the edges is shaded; note that the cut (S, V — §) respects A, since no edge
of A crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in
the set V — § on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on
the right.

COT 5993 (Lec 15) 3/1/05 25

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates are shown within the vertices, and shaded edges indicate predecessor val-
ues. Black vertices are in the set §, and white vertices are in the min-priority queue Q@ = V — §.
(a) The situation just before the first iteration of the while loop of lines 4-8. The shaded vertex has
the minimum d value and is chosen as vertex u in line 5. (b)=(f) The situation after each successive
iteration of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next
iteration. The d and 7 values shown in part (f) are the final values.

COT 5993 (Lec 15) 3/1/05 26

Dijkstra’s Single Source Shortest Path Algorithm

DIJKSTRA(G, w, s)
1. // INITIALIZE-SINGLE-SOURCE((, s)
for each vertex v € V|G
do d|v| —
7|v] «— NIL

ds] «— 0
2. S—1
3. @+ V|G
4. while Q # 0
b, do u +— EXTRACT-MIN(Q)
6. S — SU{u}
7. for each v € Adjlu
8. do // RELAX(u,v,w)

if djv] > dlu] + w(u, v)
then d[{’v}} — du] + w(u,v)

COT 5993 (Le

DIIKSTRA(G, w, 8)
1. // INITIALIZE-SINGLE-SOURCE(G, 3)
for each vertex v € V|G|
do dv| +— oo
m|v] < NIL

dls] 0
2. S+ 10
3. Q< V|G
4. while Q £ 0
5, do u — EXTRACT-MIN(Q)
6. S— SuU{u}
T. for each v € Adj|u|
8. do // RELAX(u, v, w)

if djv] > dju| + w(u,v)
then d{[v}] — dlu] + wlu,v)

MST-PrRIM(G, w,7)
Q — V[G]
for each w € @
do keyu] — oo

keylr] +— 0
7[r] «— NIL
while Q@ £ 0

do u «— EXTRACT-MIN({Q)

for each v € Adj[u]
do if v € @ and w(u,v) < keylv]
then 7[v] «— u
heyle] — wu,v) 28

P e T A O SO R R B

— O

All Pairs Shortest Path Algorithm

* Invoke Dijkstra’'s SSSP algorithm n times.
* Or use dynamic programming. How?

COT 5993 (Lec 15) 3/1/05 29

0 3 8 o —4\ NIL 1 1 N 1 \
’ oo 0 o0 1 7 NIL NIL NIL 2
DO=] o0 4 0 o0 oo| NO=fNL 3 NL NL NL
2 oo -5 0 o 4 NIL 4 NIL NIL
© o0 oo 6 0) NIL NIL NIL 5 NI/
(0 3 8 oo —4) (NIL 1 1 NI 1)
o 0 oo 1 7 NIL. NIL NIL 2 2
DW=] oo 4 0 o0 oo M=) nNL 3 NL NL NL
2 5 -5 0 -2 4 1 4 N 1
\oo o0 o0 6 0) \NIL NIL NIL 5 NIL)
f 0 3 8 4 —4 (NIL 1 1 2 1 \
oo 0 o0 1 7 NIL NIL NIL 2 2
DPD=]oo 4 0 5 1 n®=| N 3 NL 2 2
2 5 -5 0 -2 4 1 4 NIL 1
\occ © o 6 0 k NIL NIL NIL 5 NIL)
(0 3 8 4 —4 - (NL 1 1 2 1)
oo 0 o0 1 7 NIL NIL NIL 2 2
DP=loo. 4 05 1 n®=| o 3 N 2 2
2 -1 -5 0 -2 4 3 4 NIL 1
\oo o© o0 6 O ~ k NIL NIL NIL 5 NIL
([0 3 -1 4 —4) NIL 1T 4 2 1)
3 0 -4 1 -1 . 4 NIL 4 2 1
DW=|7 4 05 3 n=] 4 3 NL 2 1
2 -1 -5 0 -2 4 3 4 NIL 1
\8 5 16 0) 4 3 4 5 NIL)
(0 1 -3 2 —4\ NIL 3 4 5 1 \
‘ 3 0 -4 1 -t 4 NL 4 2 1
D=7 4 o0 5 3 n¥=} 4 3 N 2 1
2 -1 -5 0 -2 4 3 4 NIL 1
\8 5 16 0 4 3 4 5 NL)
COT 599 Figure 25.4 The sequence of matrices D® and T® computed by the Floyd-Warshall algorithm

for the graph in Figure 25.1.

Figure 14.38

Worst-case running times of various graph algorithms

TYPE OF GRAPH PROBLEM RUNNING TIME COMMENTS

Unweighted O(|E)) Breadth-first search
Weighted, no negative edges O(|E|log|V]) Dijkstra's algorithm
Weighted, negative edges O(E| - V] Bellman—Ford algorithm
Weighted, acydlic O(|E)) Uses topological sort
COT 5993 (Lec 15) 3/1/05 31

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

	Graphs
	Graph Traversal
	Connectivity
	Minimum Spanning Tree
	Minimum Spanning Tree
	Proof of Correctness: MST Algorithms
	Dijkstra’s Single Source Shortest Path Algorithm
	All Pairs Shortest Path Algorithm

