1. Short Questions

- (a) What are the main consequences of a polynomial-time reduction from problem Π_1 to Π_2 ?
- (b) Why does Cook's Theorem show that SAT is the hardest problem in \mathcal{NP} ?
- (c) Write down the decision version of the *minimum spanning tree* problem.
- (d) Differentiate between *NP-Complete* and *NP-hard*. Note that the optimization version of every NP-complete decision problem is NP-hard.
- (e) Correct the following sentence as needed: "To prove a polynomial-time reduction from decision problem Π_1 to decision problem Π_2 , one needs to design a polynomial-time algorithm that takes an arbitrary instance of problem Π_1 (call it π_1) and creates an instance of problem Π_2 (call it π_2) in such a way that π_1 is a YES-instance of Π_1 if π_2 is a YES-instance of Π_2 ."
- (f) The well-known NP-complete decision problem CLIQUE is formally described here: INSTANCE: Graph G = (V, E), positive integer $k \leq |V|$. QUESTION: Does G contain a clique of size k or more, i.e., a subset $V' \subseteq V$ with $|V'| \geq k$ such that every pair of vertices in V' is joined by an edge in E? Now write down the NP-complete problem TSP in the same format. It is necessary to be mathematically precise in this formulation.
- (g) Write down the VERTEX COVER problem in the above format.
- (h) What does one have to do to prove that a problem is in \mathcal{NP} ?
- (i) Your friend claims that he has proved that problem Π is NP-hard, because he has a polynomial-time reduction from Π to SAT. Please explain to him why his proof is faulty.
- (j) Name as many open problems as you can related to the classes \mathcal{P} , \mathcal{NP} , co- \mathcal{NP} , and \mathcal{NP} -complete.
- 2. Read and understand Section 34.5.2 that shows that the VERTEX COVER problem is NP-Complete using a polynomial-time reduction from the CLIQUE problem.
- 3. Read and understand Section 34.5.4 that shows that the TSP problem is NP-Complete using a polynomial-time reduction from the HAMILTONIAN-CYCLE problem.
- 4. Read and understand the problem description for the SUBSET-SUM problem (start of Section 34.5.4). Now show that SUBSET-SUM is in \mathcal{NP} (not \mathcal{NP} -complete).