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Definition of big-Oh

! We say that  
! F(n) = O(G(n)) 

     If there exists two positive constants, c and n0, such that  
! For all n ≥ n0, we have F(n) ≤ c G(n) 

• Thus, to show that F(n) = O(G(n)), you need to find two positive constants 
that satisfy the condition mentioned above 

• Also, to show that F(n) ≠ O(G(n)), you need to show that for any value of 
c, there does not exist a positive constant n0 that satisfies the condition 
mentioned above
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!3 Algorithm Analysis

! Worst-case time complexity* 
! Worst possible time of all input instances of length N 

! (Worst-case) space complexity 
! Worst possible spaceof all input instances of length N 

! Average-case time complexity 
! Average time of all input instances of length N
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Computation Tree for A on n inputs
! Assume A is a comparison-based sorting alg 
! Every node represents a comparison between two 

items in A 
! Branching based on result of comparison 
! Leaf corresponds to algorithm halting with output 
! Every input follows a path in tree 
! Different inputs follow different paths 
! Time complexity on input x = depth of leaf where it 

ends on input x
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Upper and Lower Bounds
! Time Complexity of a Problem 

! Difficulty: Since there can be many algorithms that solve a problem, what time 
complexity should we pick? 

! Solution: Define upper bounds and lower bounds within which the time complexity lies. 
! What is the upper bound on time complexity of sorting? 

! Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N), 
either one works as an upper bound.  

! Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e., 
time complexity of the best algorithm. 

! What is the lower bound on time complexity of sorting? 
! Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no 

algorithm that sorts N items can run in worst-case time o(f(N)). 
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Lower Bounds
! It’s possible to prove lower bounds for many comparison-based 

problems.  
! For comparison-based problems, for inputs of length N, if there are P(N) 

possible solutions, then  
! any algorithm needs log2(P(N)) to solve the problem.  

! Binary Search on a list of N items has at least N + 1 possible solutions. 
Hence lower bound is  
! log2(N+1).  

! Sorting a list of N items has at least N! possible solutions. Hence lower 
bound is 
! log2(N!) = O(N log N) 

! Thus, MergeSort is an optimal algorithm.  
! Because its worst-case time complexity equals lower bound!
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Beating the Lower Bound
! Bucket Sort 

! Runs in time O(N+K) given N integers in range [a+1, a+K] 
! If K = O(N), we are able to sort in O(N) 
! How is it possible to beat the lower bound?  
! Only because we know more about the data.  
! If nothing is know about the data, the lower bound holds. 

! Radix Sort 
! Runs in time O(d(N+K)) given N items with d digits each in range 

[1,K] 
! Counting Sort 

! Runs in time O(N+K) given N items in range [a+1, a+K]
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!8 Stable Sort

! A sort is stable if equal elements appear in 
the same order in both the input and the 
output. 

! Which sorts are stable? Homework!
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!9 Order Statistics
! Maximum, Minimum 

! Upper Bound 
! O(n) because ?? 
! We have an algorithm with a single for-loop: n-1 comparisons 

! Lower Bound 
!n-1 comparisons 

! MinMax 
! Upper Bound: 2(n-1) comparisons 
! Lower Bound: 3n/2 comparisons 

! Max and 2ndMax 
! Upper Bound: (n-1) + (n-2) comparisons 
! Lower Bound: Harder to prove

7 3 1 9 4 8 2 5 0

RankA(x) = 
position of x in 
sorted order of A
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!10 k-Selection; Median
! Select the k-th smallest item in list 
! Naïve Solution 

! Sort;  
! pick the k-th smallest item in sorted list. 
   O(n log n) time complexity 

! Idea: Modify Partition from QuickSort 
! How? 

! Randomized solution: Average case O(n) 
! Improved Solution: worst case O(n)
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Using Partition for k-Selection

! Perform Partition from 
QuickSort (assume all 
unique items) 

! Rank(pivot) = 1 + # of items 
that are smaller than pivot 

! If Rank(pivot) = k, we are 
done 

! Else, recursively perform k-
Selection in one of the  two 
partitions 
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!12 QuickSelect: a variant of QuickSort
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k-Selection Time Complexity
! Perform Partition from QuickSort (assume all unique items) 
! Rank(pivot) = 1 + # of items that are smaller than pivot 
! If Rank(pivot) = k, we are done 
! Else, recursively perform k-Selection in one of the two partitions 
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• On the average: 
▪ Rank(pivot) = n / 2 

• Average-case time 
▪ T(N) = T(N/2) + O(N)  
▪ T(N) = O(N) 

• Worst-case time 
▪ T(N) = T(N-1) + O(N) 
▪ T(N) = O(N2)
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!14 Randomized Solution for k-Selection
! Uses RandomizedPartition instead of Partition 

! RandomizedPartition picks the pivot uniformly at 
random from among the elements in the list to be 
partitioned.  

! Randomized k-Selection runs in O(N) time on 
the average 

! Worst-case behavior is very poor O(N2)
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Readings for next class

! Trees,  
! Binary Trees,  
! Binary Search Trees,  
! Balanced Binary Search Trees

9/9/19
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!16 Data Structure Evolution

! Standard operations on data structures 
! Search 
! Insert 
! Delete 

! Linear Lists  
! Implementation: Arrays (Unsorted and Sorted) 

! Dynamic Linear Lists 
! Implementation: Linked Lists 

! Dynamic Trees 
! Implementation: Binary Search Trees
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!17 BST: Search

Time Complexity: O(h)
h = height of binary search tree

Not O(log n) — Why?
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!18 BST: Insert
Time Complexity: O(h)

h = height of binary search tree

Search for x in T

Insert x as leaf in T
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BST: Delete

Time Complexity: O(h)
h = height of binary search tree

Set y as the node to be deleted. It 
has at most one child, and let that 
child be node x

If y has one child, then y is deleted 
and the parent pointer of x is fixed.

The child pointers of the parent of x 
is fixed.

The contents of node z are fixed.



Common Data Structures
Search Insert Delete Comments

Unsorted Arrays O(N) O(1) O(N)

Sorted Arrays O(log N) O(N) O(N)

Unsorted Linked 
Lists O(N) O(1) O(N)

Sorted Linked Lists O(N) O(N) O(N)

Binary Search Trees O(H) O(H) O(H) H = O(N)

Balanced BSTs O(log N) O(log N) O(log N) As H = O(log N)
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Animations

! https://www.cs.usfca.edu/~galles/visualization/
Algorithms.html  

! https://visualgo.net/  
! http://www.cs.armstrong.edu/liang/animation/

animation.html  
! http://www.cs.jhu.edu/~goodrich/dsa/trees/  
! https://www.youtube.com/watch?v=Y-5ZodPvhmM  
! http://www.algoanim.ide.sk/ 
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!22 Red-Black (RB) Trees

! Every node in a red-black tree is colored either red or black.  
! The root is always black. 
! Every path on the tree, from the root down to the leaf, has the 

same number of black nodes. 
! No red node has a red child. 
! Every NIL pointer points to a special node called NIL[T] and is 

colored black. 
! Every RB-Tree with n nodes has black height at most logn  
! Every RB-Tree with n nodes has height at most 2logn
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Red-Black Tree Insert

RB-Insert (T,z)   // pg 315 
 // Insert node z in tree T 
 y = NIL[T] 
 x = root[T] 
 while (x ≠ NIL[T]) do 
  y = x 
  if (key[z] < key[x])  
   x = left[x] 
   x = right[x] 
 p[z] = y 
 if (y == NIL[T])  
  root[T] = z 
 else if (key[z] < key[y]) 
  left[y] = z 
 else right[y] = z 
 // new stuff 
 left[z] = NIL[T] 
 right[z] = NIL[T] 
 color[z] = RED 
 RB-Insert-Fixup (T,z)

RB-Insert-Fixup (T,z) 
 while (color[p[z]] == RED) do 
  if (p[z] = left[p[p[z]]]) then 
        y = right[p[p[z]]] 
        if (color[y] == RED) then         // C-1 
   color[p[z]] = BLACK 
   color[y] = BLACK 
   z = p[p[z]] 
   color[z] = RED 
        else  if (z == right[p[z]]) then // C-2 
         z = p[z] 
         LeftRotate(T,z) 
   color[p[z]] = BLACK        // C-3 
   color[p[p[z]]] = RED 
   RightRotate(T,p[p[z]]) 
  else  
        // Symmetric code: “right” ↔ “left” 
        • • • 
 color[root[T]] = BLACK
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Case 1: Non-elbow; sibling of parent (y) 
red
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Case 2: Elbow case
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Case 3: Non-elbow; sibling of parent 
black
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!27 Rotations
LeftRotate(T,x)    // pg 278 
 // right child of x becomes x’s parent.  
 // Subtrees need to be readjusted. 
 y = right[x]    
 right[x] = left[y] // y’s left subtree becomes x’s right 
 p[left[y]] = x 
 p[y] = p[x] 
 if (p[x] == NIL[T]) then 
  root[T] = y 
 else if (x == left[p[x]]) then 
  left[p[x]] = y 
 else right[p[x]] = y 
 left[y] = x 
 p[x] = y
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Reading for next class

! Red Black Trees 
! Properties 
! Invariants 
! Insert and Delete 

! Mathematical Induction
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