
CAP 5510 / CGS 5166

COT 6405: Analysis of
Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html
9/9/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407

Definition of big-Oh

! We say that
! F(n) = O(G(n))

 If there exists two positive constants, c and n0, such that
! For all n ≥ n0, we have F(n) ≤ c G(n)

• Thus, to show that F(n) = O(G(n)), you need to find two positive constants
that satisfy the condition mentioned above

• Also, to show that F(n) ≠ O(G(n)), you need to show that for any value of
c, there does not exist a positive constant n0 that satisfies the condition
mentioned above

1/17/17

!2

COT 5407 1/19/17

!3 Algorithm Analysis

! Worst-case time complexity*
! Worst possible time of all input instances of length N

! (Worst-case) space complexity
! Worst possible spaceof all input instances of length N

! Average-case time complexity
! Average time of all input instances of length N

CAP 5510 / CGS 5166

Computation Tree for A on n inputs
! Assume A is a comparison-based sorting alg
! Every node represents a comparison between two

items in A
! Branching based on result of comparison
! Leaf corresponds to algorithm halting with output
! Every input follows a path in tree
! Different inputs follow different paths
! Time complexity on input x = depth of leaf where it

ends on input x

9/9/19

!4

COT 5407

Upper and Lower Bounds
! Time Complexity of a Problem

! Difficulty: Since there can be many algorithms that solve a problem, what time
complexity should we pick?

! Solution: Define upper bounds and lower bounds within which the time complexity lies.
! What is the upper bound on time complexity of sorting?

! Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N),
either one works as an upper bound.

! Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e.,
time complexity of the best algorithm.

! What is the lower bound on time complexity of sorting?
! Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no

algorithm that sorts N items can run in worst-case time o(f(N)).

1/19/17

!5

COT 5407

Lower Bounds
! It’s possible to prove lower bounds for many comparison-based

problems.
! For comparison-based problems, for inputs of length N, if there are P(N)

possible solutions, then
! any algorithm needs log2(P(N)) to solve the problem.

! Binary Search on a list of N items has at least N + 1 possible solutions.
Hence lower bound is
! log2(N+1).

! Sorting a list of N items has at least N! possible solutions. Hence lower
bound is
! log2(N!) = O(N log N)

! Thus, MergeSort is an optimal algorithm.
! Because its worst-case time complexity equals lower bound!

1/19/17

!6

COT 5407

Beating the Lower Bound
! Bucket Sort

! Runs in time O(N+K) given N integers in range [a+1, a+K]
! If K = O(N), we are able to sort in O(N)
! How is it possible to beat the lower bound?
! Only because we know more about the data.
! If nothing is know about the data, the lower bound holds.

! Radix Sort
! Runs in time O(d(N+K)) given N items with d digits each in range

[1,K]
! Counting Sort

! Runs in time O(N+K) given N items in range [a+1, a+K]

1/19/17

!7

COT 5407 1/19/17

!8 Stable Sort

! A sort is stable if equal elements appear in
the same order in both the input and the
output.

! Which sorts are stable? Homework!

COT 5407 9/30/08

!9 Order Statistics
! Maximum, Minimum

! Upper Bound
! O(n) because ??
! We have an algorithm with a single for-loop: n-1 comparisons

! Lower Bound
!n-1 comparisons

! MinMax
! Upper Bound: 2(n-1) comparisons
! Lower Bound: 3n/2 comparisons

! Max and 2ndMax
! Upper Bound: (n-1) + (n-2) comparisons
! Lower Bound: Harder to prove

7 3 1 9 4 8 2 5 0

RankA(x) =
position of x in
sorted order of A

COT 5407 9/30/08

!10 k-Selection; Median
! Select the k-th smallest item in list
! Naïve Solution

! Sort;
! pick the k-th smallest item in sorted list.
 O(n log n) time complexity

! Idea: Modify Partition from QuickSort
! How?

! Randomized solution: Average case O(n)
! Improved Solution: worst case O(n)

COT 5407

Using Partition for k-Selection

! Perform Partition from
QuickSort (assume all
unique items)

! Rank(pivot) = 1 + # of items
that are smaller than pivot

! If Rank(pivot) = k, we are
done

! Else, recursively perform k-
Selection in one of the two
partitions

1/26/17

!11

COT 5407 9/30/08

!12 QuickSelect: a variant of QuickSort

COT 5407

k-Selection Time Complexity
! Perform Partition from QuickSort (assume all unique items)
! Rank(pivot) = 1 + # of items that are smaller than pivot
! If Rank(pivot) = k, we are done
! Else, recursively perform k-Selection in one of the two partitions

1/26/17

!13

• On the average:
▪ Rank(pivot) = n / 2

• Average-case time
▪ T(N) = T(N/2) + O(N)
▪ T(N) = O(N)

• Worst-case time
▪ T(N) = T(N-1) + O(N)
▪ T(N) = O(N2)

COT 5407 9/30/08

!14 Randomized Solution for k-Selection
! Uses RandomizedPartition instead of Partition

! RandomizedPartition picks the pivot uniformly at
random from among the elements in the list to be
partitioned.

! Randomized k-Selection runs in O(N) time on
the average

! Worst-case behavior is very poor O(N2)

CAP 5510 / CGS 5166

Readings for next class

! Trees,
! Binary Trees,
! Binary Search Trees,
! Balanced Binary Search Trees

9/9/19

!15

COT 5407 1/31/17

!16 Data Structure Evolution

! Standard operations on data structures
! Search
! Insert
! Delete

! Linear Lists
! Implementation: Arrays (Unsorted and Sorted)

! Dynamic Linear Lists
! Implementation: Linked Lists

! Dynamic Trees
! Implementation: Binary Search Trees

COT 5407 1/31/17

!17 BST: Search

Time Complexity: O(h)
h = height of binary search tree

Not O(log n) — Why?

COT 5407 1/31/17

!18 BST: Insert
Time Complexity: O(h)

h = height of binary search tree

Search for x in T

Insert x as leaf in T

COT 5407 1/31/17

!19
BST: Delete

Time Complexity: O(h)
h = height of binary search tree

Set y as the node to be deleted. It
has at most one child, and let that
child be node x

If y has one child, then y is deleted
and the parent pointer of x is fixed.

The child pointers of the parent of x
is fixed.

The contents of node z are fixed.

Common Data Structures
Search Insert Delete Comments

Unsorted Arrays O(N) O(1) O(N)

Sorted Arrays O(log N) O(N) O(N)

Unsorted Linked
Lists O(N) O(1) O(N)

Sorted Linked Lists O(N) O(N) O(N)

Binary Search Trees O(H) O(H) O(H) H = O(N)

Balanced BSTs O(log N) O(log N) O(log N) As H = O(log N)

COT 5407

Animations

! https://www.cs.usfca.edu/~galles/visualization/
Algorithms.html

! https://visualgo.net/
! http://www.cs.armstrong.edu/liang/animation/

animation.html
! http://www.cs.jhu.edu/~goodrich/dsa/trees/
! https://www.youtube.com/watch?v=Y-5ZodPvhmM
! http://www.algoanim.ide.sk/

2/2/17

!21

COT 5407 2/2/17

!22 Red-Black (RB) Trees

! Every node in a red-black tree is colored either red or black.
! The root is always black.
! Every path on the tree, from the root down to the leaf, has the

same number of black nodes.
! No red node has a red child.
! Every NIL pointer points to a special node called NIL[T] and is

colored black.
! Every RB-Tree with n nodes has black height at most logn
! Every RB-Tree with n nodes has height at most 2logn

COT 5407 2/2/17

!23
Red-Black Tree Insert

RB-Insert (T,z) // pg 315
 // Insert node z in tree T
 y = NIL[T]
 x = root[T]
 while (x ≠ NIL[T]) do
 y = x
 if (key[z] < key[x])
 x = left[x]
 x = right[x]
 p[z] = y
 if (y == NIL[T])
 root[T] = z
 else if (key[z] < key[y])
 left[y] = z
 else right[y] = z
 // new stuff
 left[z] = NIL[T]
 right[z] = NIL[T]
 color[z] = RED
 RB-Insert-Fixup (T,z)

RB-Insert-Fixup (T,z)
 while (color[p[z]] == RED) do
 if (p[z] = left[p[p[z]]]) then
 y = right[p[p[z]]]
 if (color[y] == RED) then // C-1
 color[p[z]] = BLACK
 color[y] = BLACK
 z = p[p[z]]
 color[z] = RED
 else if (z == right[p[z]]) then // C-2
 z = p[z]
 LeftRotate(T,z)
 color[p[z]] = BLACK // C-3
 color[p[p[z]]] = RED
 RightRotate(T,p[p[z]])
 else
 // Symmetric code: “right” ↔ “left”
 • • •
 color[root[T]] = BLACK

COT 5407

Case 1: Non-elbow; sibling of parent (y)
red

2/2/17

!24

COT 5407

Case 2: Elbow case

2/2/17

!25

COT 5407

Case 3: Non-elbow; sibling of parent
black

2/2/17

!26

COT 5407 2/2/17

!27 Rotations
LeftRotate(T,x) // pg 278
 // right child of x becomes x’s parent.
 // Subtrees need to be readjusted.
 y = right[x]
 right[x] = left[y] // y’s left subtree becomes x’s right
 p[left[y]] = x
 p[y] = p[x]
 if (p[x] == NIL[T]) then
 root[T] = y
 else if (x == left[p[x]]) then
 left[p[x]] = y
 else right[p[x]] = y
 left[y] = x
 p[x] = y

CAP 5510 / CGS 5166

Reading for next class

! Red Black Trees
! Properties
! Invariants
! Insert and Delete

! Mathematical Induction

9/9/19

!28

