COT 6405: Analysis of Algorithms

Giri NARASIMHAN

More Dynamic Operations

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Arrays</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td></td>
</tr>
<tr>
<td>Sorted Arrays</td>
<td>$O(\log N)$</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
<td></td>
</tr>
<tr>
<td>Unsorted Linked Lists</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
<td></td>
</tr>
<tr>
<td>Sorted Linked Lists</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
<td></td>
</tr>
<tr>
<td>Binary Search Trees</td>
<td>$O(H)$</td>
<td>$O(H)$</td>
<td>$O(H)$</td>
<td>$H = O(N)$</td>
</tr>
<tr>
<td>Balanced BSTs</td>
<td>$O(\log N)$</td>
<td>$O(\log N)$</td>
<td>$O(\log N)$</td>
<td>As $H = O(\log N)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Se/In/De</th>
<th>Rank</th>
<th>Select</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced BSTs</td>
<td>$O(\log N)$</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
<td></td>
</tr>
<tr>
<td>Augmented BBSTs</td>
<td>$O(\log N)$</td>
<td>$O(\log N)$</td>
<td>$O(\log N)$</td>
<td></td>
</tr>
</tbody>
</table>
Room Scheduling Problem

- Given a set of requests to use a room
 - \([0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]\)
- Schedule largest number of above requests in the room
- Different approaches
 - Try by hand, exhaustive search, improve an initial solution, iterative methods, divide and conquer, greedy methods, etc.

- Simple Greedy Selection
 - Sort by start time and pick in “greedy” fashion
 - Does not work. WHY?
 - \([0,6], [6,10]\) is the solution you will end up with.

- Other greedy strategies
 - Sort by length of interval
 - Does not work. WHY?
Room Scheduling – Improved Solution

- [0, 6], [1, 4], [2, 13], [3, 5], [3, 8], [5, 7], [5, 9], [6, 10], [8, 11], [8, 12], [12, 14]
- [1, 4], [3, 5], [0, 6], [5, 7], [3, 8], [5, 9], [6, 10], [8, 11], [8, 12], [2, 13], [12, 14]

-- Sorted by finish times

- [1, 4], [3, 5], [0, 6], [5, 7], [3, 8], [5, 9], [6, 10], [8, 11], [8, 12], [2, 13], [12, 14]
- [1, 4], [3, 5], [0, 6], [5, 7], [3, 8], [5, 9], [6, 10], [8, 11], [8, 12], [2, 13], [12, 14]
- [1, 4], [3, 5], [0, 6], [5, 7], [3, 8], [5, 9], [6, 10], [8, 11], [8, 12], [2, 13], [12, 14]
- [1, 4], [3, 5], [0, 6], [5, 7], [3, 8], [5, 9], [6, 10], [8, 11], [8, 12], [2, 13], [12, 14]
- [1, 4], [3, 5], [0, 6], [5, 7], [3, 8], [5, 9], [6, 10], [8, 11], [8, 12], [2, 13], [12, 14]
Greedy Algorithms

- Given a set of activities \((s_i, f_i)\), we want to schedule the maximum number of non-overlapping activities.

GREEDY-ACTIVITY-SELECTOR \((s, f)\)

1. \(n = \text{length}[s]\)
2. \(S = \{a_1\}\)
3. \(i = 1\)
4. for \(m = 2\) to \(n\) do
5. if \(s_m\) is not before \(f_i\) then
6. \(S = S \cup \{a_m\}\)
7. \(i = m\)
8. return \(S\)
Why does it work?

- **THEOREM**
 Let A be a set of activities and let a_1 be the activity with the earliest finish time. Then activity a_1 is in some maximum-sized subset of non-overlapping activities.

- **PROOF**
 Let S' be a solution that does not contain a_1. Let a'_1 be the activity with the earliest finish time in S'. Then replacing a'_1 by a_1 gives a solution S of the same size.

 Why are we allowed to replace? Why is it of the same size?

 Then apply induction! How?
First choice was a good choice. Why?
 - Because it can be extended to an optimal soln.
If our first choice was a good choice, then?
 - Then we can recursively apply correctness to the remainder