COT 6405: Analysis of Algorithms Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html

CAP 5510 / CGS 5166

Room Scheduling Problem

- Given a set of requests to use a room
 - **[0,6]**, **[1,4]**, **[2,13]**, **[3,5]**, **[3,8]**, **[5,7]**, **[5,9]**, **[6,10]**, **[8,11]**, **[8,12]**, **[12,14]**
- Schedule largest number of above requests in the room
- Different approaches
 - Try by hand, exhaustive search, improve an initial solution, iterative methods, divide and conquer, greedy methods, etc.
 - Simple Greedy Selection
 - Sort by start time and pick in "greedy" fashion
 - Does not work. WHY?
 - [0,6], [6,10] is the solution you will end up with.
- Other greedy strategies
 - Sort by length of interval
 - Does not work. WHY?

Greedy Algorithms

- Given a set of activities (s_i, f_i), we want to schedule the maximum number of non-overlapping activities.
- GREEDY-ACTIVITY-SELECTOR (s, f)
 - 1. n = length[s]

2.
$$S = \{a_1\}$$

3. i = 1

3

- 4. for m = 2 to n do
- 5. if s_m is not before f_i then
- 6. $S = S U \{a_m\}$
- 7. i = m

COT 540⁸. return S

Why does it work?

THEOREM

4

Let A be a set of activities and let a_1 be the activity with the earliest finish time. Then activity a_1 is in some maximum-sized subset of non-overlapping activities.

PROOF

Let S' be a solution that does not contain a_1 . Let a'_1 be the activity with the earliest finish time in S'. Then replacing a'_1 by a_1 gives a solution S of the same size.

Why are we allowed to replace? Why is it of the same size?

⁵ Why does it work? Contd...

First choice was a good choice. Why?
Because it can be extended to an optimal soln.
If our first choice was a good choice, then?
Then we can recursively apply correctness to the

remainder

Recursive Greedy Activity Selector

- Given a set of activities (s_i, f_i), we want to schedule the maximum number of non-overlapping activities.
- GREEDY-ACTIVITY-SELECTOR (s, f, k) // Find opt sol for A[k..n]
 - 1. If k > n then return empty set

- **3.** for m = k+1 to n do
- 4. if s_m is before f_k then discard s_m
- 5. if $a_m = a_{First}$ then First++
- 6. return a_k U <u>GREEDY-ACTIVITY-SELECTOR</u> (s, f, First)

7 Greedy Algorithms – Huffman Coding

Huffman Coding Problem

Example: Release 29.1 of 15-Feb-2005 of <u>TrEMBL</u> Protein Database contains 1,614,107 sequence entries, comprising 505,947,503 amino acids. There are 20 possible amino acids. What is the minimum number of bits to store the compressed database?

~2.5 G bits or 300MB.

How to improve this?

Information: Frequencies are not the same.

Ala (A) 7.72	<mark>Gln (</mark> Q) 3.91	Leu (L) 9.56	<mark>Ser</mark> (S) 6.98
Arg (R) 5.24	<mark>Glu</mark> (E) 6.54	Lys (K) 5.96	Thr (T) 5.52
Asn (N) 4.28	<mark>Gly</mark> (G) 6.90	Met (M) 2.36	Trp (W) 1.18
Asp (D) 5.28	His (H) 2.26	Phe (F) 4.06	Tyr (Y) 3.13
Cys (C) 1.60	lle (I) 5.88 Pro	(P) 4.87 V	al (V) 6.66

Idea: Use shorter codes for more frequent amino acids and longer codes for less frequent COT 5407 ones.

2/7/17

Huffman Coding

8

2 million characters in file.

A, C, G, T, N, Y, R, S, M

2 million characters in file.

Length = ?

Expected length = ?

Sum up products of frequency times the code length, i.e.,

(.22x2 + .22x2 + .18x3 + .18x3 + .10x3 + .05x5 + .04x5 + .04x5 + .03x5) x 2 M bits =

^{COT 5407} 3.24 M bits = .4 MB

New Room Scheduling Problem

- Room Scheduling with Attendee Numbers: Given a set of requests to use a room (with # of attendees)
 - [1,4] (4), [3,5] (8), [0,6] (5), [5,7] (15), [3,8] (22), [5,9] (6), [6,10] (5), [8,11] (5), [8,12] (14), [2,13] (11), [12,14] (6)
- Schedule requests to maximize the total # of attendees
 - Greedy Solution will be [1,4], [5,7], [8,11], [12,14]
 - And will satisfy 4 + 15 + 5 + 6 = 30 attendees
 - Greed is not good!

Dynamic Programming

Old Activity Problem Revisited: Given a set of n activities a_i = (s_i, f_i), we want to schedule the maximum number of non-overlapping activities.

General Approach: Attempt a recursive solution

Recursive Solution

- Observation: To solve the problem on activities A = {a₁,...,a_n}, we notice that either
 - optimal solution does not include a_n
 - then enough to solve subproblem on $A_{n-1} = \{a_1, \dots, a_{n-1}\}$
 - optimal solution includes an
 - Enough to solve subproblem on A_k = {a₁,...,a_k}, the set A without activities that overlap a_n.

Recursive Solution

int Rec-ROOM-SCHEDULING (s, f, t, n)

- // Here n equals length[s];
- // Input: first n requests with their s & f times & # attend
- // It returns optimal number of requests scheduled
- 1. Let k be index of last request with finish time before s_n
- 2. Output larger of two values:
- 3. { <u>Rec-ROOM-SCHEDULING</u> (s, f, t, n-1), <u>Rec-ROOM-SCHEDULING</u> (s, f, t, k) + t[n] } // t[n] is number of attendees of n-th request

13 Observations

- If we look at all subproblems generated by the recursive solution, and ignore repeated calls, then we see the following calls:
 - Rec-ROOM-SCHEDULING (s, f, n-1)
 - Rec-ROOM-SCHEDULING (s, f, n-2)
 - Rec-ROOM-SCHEDULING (s, f, n')
 - ...

•

-

• ...

- Rec-ROOM-SCHEDULING (s, f, k)
 - Rec-ROOM-SCHEDULING (s, f, k-1)
 - Rec-ROOM-SCHEDULING (s, f, k')
- Above list includes all subproblems Rec-ROOM-SCHEDULING (s, f, i) for all values of i between 1 and n

Dynamic Prog: Room Scheduling

- Let A be the set of n activities A = {a₁, ..., a_n} (sorted by finish times).
- The inputs to the subproblems are:

$$\mathbf{A}_1 = \{\mathbf{a}_1\}$$

$$A_2 = \{a_1, a_2\}$$

$$A_3 = \{a_1, a_2, a_3\}, \dots,$$

 $A_n = A$

i-th Subproblem: Select the max number of nonoverlapping activities from A_i

An efficient implementation

- Why not solve the subproblems on A₁, A₂, ..., A_{n-1}, A_n in that order?
- Is the problem on A₁ easy?
- Can the optimal solutions to the problems on A₁,...,A_i help to solve the problem on A_{i+1}?
 - YES! Either:
 - optimal solution does not include a_{i+1}
 - problem on A_i
 - optimal solution includes a_{i+1}
 - problem on A_k (equal to A_i without activities that overlap a_{i+1})
 - but this has already been solved according to our ordering.

Dynamic Prog: Room Scheduling

- Solving for A_n solves the original problem.
- Solving for A₁ is easy.
- If you have optimal solutions S₁, ..., S_{i-1} for subproblems on A₁, ..., A_{i-1}, how to compute S_i?
- Recurrence Relation:
 - The optimal solution for A_i either
 - Case 1: does not include a_i or
 - Case 2: includes a_i
 - Case 1: $s_i = s_{i-1}$
 - Case 2: $S_i = S_k U \{a_i\}$, for some k < i.

How to find such a k? We know that a_k cannot overlap a_i.

DP: Room Scheduling w/ Attendees

- DP-ROOM-SCHEDULING-w-ATTENDEES (s, f, t)
 - n = length[s]

17

- 2. $N[1] = t_1$ // number of attendees in S_1
- 3. F[1] = 1 // last activity in S_1
- **4.** for i = 2 to n do
- 5. let k be the last activity finished before s_i
- 6. if (N[i-1] > N[k] + t_i) then // Case 1
- 7. N[i] = N[i-1]
- 8. F[i] = F[i-1]
- **9.** else // Case 2
- **10.** $N[i] = N[k] + t_i$

```
        11.
        F[i] = I

        COT 5407
        12. Output N[n]
```

How to output S_n? Backtrack! Time Complexity? O(n lg n)

2/9/17

Approach to DP Problems

- Write down a recursive solution
 - Use recursive solution to identify list of subproblems to solve (there must be overlapping subproblems for effective DP)
- Decide a data structure to store solutions to subproblems (MEMOIZATION)
- Write down Recurrence relation for solutions of subproblems
- Identify a hierarchy/order for subproblems
- Write down non-recursive solution/algorithm

Longest Common Subsequence

S₁ = CORIANDER **CORIANDER**

S₂ = CREDITORS CREDITORS

Longest Common Subsequence(S₁[1..9], S₂[1..9]) = CRIR

Recursive Solution

LCS(S₁, S₂, m, n)

20

- // m is length of S_1 and n is length of S_2
- // Returns length of longest common subsequence
- 1. If $(S_1[m] == S_2[n])$, then
 - return 1 + LCS(S₁, S₂, m-1, n-1)
- 3. Else return larger of
- 4. LCS(S₁, S₂, m-1, n) and LCS(S₁, S₂, m, n-1)

Observation:

All the recursive calls correspond to subproblems to solve and they include $LCS(S_1, S_2, i, j)$ for all i between 1 and m, and all j between 1 and n

Recurrence Relation & Memoization

- **Recurrence** Relation:
 - $LCS[i,j] = LCS[i-1, j-1] + 1, if S_1[i] = S_2[j])$

LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise

- Table (m X n table)
- Hierarchy of Solutions?
 - Solve in row major order

LCS Problem

22	
22	

LCS_Length (X, Y) 1. $m \leftarrow length[X]$ 2. $n \leftarrow \text{Length}[Y]$ 3. for i = 1 to m 4. do c[i, 0] ← 0 5. for j =1 to n 6. do c[0,j] ←0 7. for i = 1 to m do for j = 1 to n 8. 9./ do if (xi = yj) 10. then $c[i, j] \leftarrow c[i-1, j-1] + 1$ b[i, j] ← " <u></u>\" 11. 12. else if c[i-1, j] c[i, j-1] 13. then $c[i, j] \leftarrow c[i-1, j]$ 14. b[i, j] ← "↑" 15. else **c[i, j]** ← **c[i, j-1]** 16. b[i, j] ← "←" 17. COT 5407

18. return c[m,n]