
CAP 5510 / CGS 5166

COT 6405: Analysis of
Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html
9/18/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 2/7/17

!2 Room Scheduling Problem
! Given a set of requests to use a room

! [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]
! Schedule largest number of above requests in the room
! Different approaches

! Try by hand, exhaustive search, improve an initial solution, iterative
methods, divide and conquer, greedy methods, etc.

! Simple Greedy Selection
! Sort by start time and pick in “greedy” fashion
! Does not work. WHY?

! [0,6], [6,10] is the solution you will end up with.
! Other greedy strategies

! Sort by length of interval
! Does not work. WHY?

COT 5407 2/7/17

!3 Greedy Algorithms
! Given a set of activities (si, fi), we want to schedule the

maximum number of non-overlapping activities.
! GREEDY-ACTIVITY-SELECTOR (s, f)

1. n = length[s]
2. S = {a1}
3. i = 1
4. for m = 2 to n do
5. if sm is not before fi then
6. S = S U {am}
7. i = m
8. return S

COT 5407 2/7/17

!4 Why does it work?
! THEOREM
 Let A be a set of activities and let a1 be the activity with

the earliest finish time. Then activity a1 is in some
maximum-sized subset of non-overlapping activities.

! PROOF
 Let S’ be a solution that does not contain a1. Let a’1 be the

activity with the earliest finish time in S’. Then replacing a’1
by a1 gives a solution S of the same size.

 Why are we allowed to replace? Why is it of the same
size?

Then apply induction! How?

CAP 5510 / CGS 5166

Why does it work? Contd…

! First choice was a good choice. Why?
! Because it can be extended to an optimal soln.

! If our first choice was a good choice, then?
! Then we can recursively apply correctness to the

remainder

9/18/19

!5

CAP 5510 / CGS 5166

Recursive Greedy Activity Selector

! Given a set of activities (si, fi), we want to schedule the
maximum number of non-overlapping activities.

! GREEDY-ACTIVITY-SELECTOR (s, f, k) // Find opt sol for A[k..n]
1. If k > n then return empty set
2. First = k+1
3. for m = k+1 to n do
4. if sm is before fk then discard sm

5. if am = aFirst then First++
6. return ak U GREEDY-ACTIVITY-SELECTOR (s, f, First)

9/18/19

!6

COT 5407 2/7/17

!7 Greedy Algorithms – Huffman Coding
! Huffman Coding Problem
 Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database contains 1,614,107

sequence entries, comprising 505,947,503 amino acids. There are 20 possible amino acids.
What is the minimum number of bits to store the compressed database?

 ~2.5 G bits or 300MB.
! How to improve this?
! Information: Frequencies are not the same.

Ala (A) 7.72 Gln (Q) 3.91 Leu (L) 9.56 Ser (S) 6.98
Arg (R) 5.24 Glu (E) 6.54 Lys (K) 5.96 Thr (T) 5.52
Asn (N) 4.28 Gly (G) 6.90 Met (M) 2.36 Trp (W) 1.18
Asp (D) 5.28 His (H) 2.26 Phe (F) 4.06 Tyr (Y) 3.13
Cys (C) 1.60 Ile (I) 5.88 Pro (P) 4.87 Val (V) 6.66

! Idea: Use shorter codes for more frequent amino acids and longer codes for less frequent
ones.

COT 5407 2/7/17

!8

IDEA 3: Use Variable
Length Codes

A 22
T 22
C 18
G 18
N 10
Y 5
R 4
S 4
M 3

Huffman Coding

IDEA 1: Use ASCII Code
Each need at least 8 bits,
Total = 16 M bits = 2 MB

2 million characters in file.
 A, C, G, T, N, Y, R, S, M

IDEA 2: Use 4-bit Codes
Each need at least 4 bits,
Total = 8 M bits = 1 MB

110101101110010001100000000110

110101101110010001100000000110

How to Decode?
 Need Unique decoding!
 Easy for Ideas 1 & 2.
 What about Idea 3?

2 million characters in file.
 Length = ?
 Expected length = ?
 Sum up products of frequency times the code length, i.e.,
 (.22x2 + .22x2 + .18x3 + .18x3 + .10x3 + .05x5 + .04x5 + .04x5 + .03x5) x 2 M bits =
 3.24 M bits = .4 MB

Percentage
Frequencies

11
10
011
010
001
00011
00010
00001
00000

COT 5407 2/7/17

!9 New Room Scheduling Problem

! Room Scheduling with Attendee Numbers: Given a set
of requests to use a room (with # of attendees)
! [1,4] (4), [3,5] (8), [0,6] (5), [5,7] (15), [3,8] (22), [5,9] (6), [6,10]

(5), [8,11] (5), [8,12] (14), [2,13] (11), [12,14] (6)
! Schedule requests to maximize the total # of

attendees
! Greedy Solution will be [1,4], [5,7], [8,11], [12,14]
! And will satisfy 4 + 15 + 5 + 6 = 30 attendees
! Greed is not good!

COT 5407 2/9/17

!10 Dynamic Programming

! Old Activity Problem Revisited: Given a set of
n activities ai = (si, fi), we want to schedule the
maximum number of non-overlapping
activities.

! General Approach: Attempt a recursive
solution

COT 5407

Recursive Solution

! Observation: To solve the problem on
activities A = {a1,…,an}, we notice that either
! optimal solution does not include an

! then enough to solve subproblem on An-1= {a1,…,an-1}

! optimal solution includes an
! Enough to solve subproblem on Ak = {a1,…,ak}, the set A

without activities that overlap an.

2/9/17

!11

COT 5407

Recursive Solution

int Rec-ROOM-SCHEDULING (s, f, t, n)
 // Here n equals length[s];
// Input: first n requests with their s & f times & # attend
// It returns optimal number of requests scheduled
1. Let k be index of last request with finish time before sn
2. Output larger of two values:
3. { Rec-ROOM-SCHEDULING (s, f, t, n-1),
 Rec-ROOM-SCHEDULING (s, f, t, k) + t[n] }

 // t[n] is number of attendees of n-th request
2/9/17

!12

COT 5407

Observations
! If we look at all subproblems generated by the recursive solution,

and ignore repeated calls, then we see the following calls:
! Rec-ROOM-SCHEDULING (s, f, n-1)

! Rec-ROOM-SCHEDULING (s, f, n-2)
! …

! Rec-ROOM-SCHEDULING (s, f, n’)
! …

! Rec-ROOM-SCHEDULING (s, f, k)
! Rec-ROOM-SCHEDULING (s, f, k-1)

! …
! Rec-ROOM-SCHEDULING (s, f, k’)

! …

! Above list includes all subproblems Rec-ROOM-SCHEDULING (s, f,
i) for all values of i between 1 and n

2/9/17

!13

COT 5407 2/9/17

!14 Dynamic Prog: Room Scheduling
! Let A be the set of n activities A = {a1, …, an} (sorted by

finish times).
! The inputs to the subproblems are:
 A1 = {a1}
 A2 = {a1, a2}
 A3 = {a1, a2, a3}, …,
 An = A
! i-th Subproblem: Select the max number of non-

overlapping activities from Ai

COT 5407 2/9/17

!15 An efficient implementation
! Why not solve the subproblems on A1, A2, …, An-1, An in that

order?
! Is the problem on A1 easy?
! Can the optimal solutions to the problems on A1,…,Ai help

to solve the problem on Ai+1?
! YES! Either:

!optimal solution does not include ai+1
! problem on Ai

!optimal solution includes ai+1
! problem on Ak (equal to Ai without activities that overlap ai+1)
! but this has already been solved according to our ordering.

COT 5407 2/9/17

!16 Dynamic Prog: Room Scheduling
! Solving for An solves the original problem.
! Solving for A1 is easy.
! If you have optimal solutions S1, …, Si-1 for subproblems on A1,

…, Ai-1, how to compute Si?
! Recurrence Relation:

! The optimal solution for Ai either
!Case 1: does not include ai or
!Case 2: includes ai

! Case 1: Si = Si-1
! Case 2: Si = Sk U {ai}, for some k < i.

!How to find such a k? We know that ak cannot overlap ai.

COT 5407 2/9/17

!17 DP: Room Scheduling w/ Attendees
! DP-ROOM-SCHEDULING-w-ATTENDEES (s, f, t)

1. n = length[s]
2. N[1] = t1 // number of attendees in S1
3. F[1] = 1 // last activity in S1
4. for i = 2 to n do
5. let k be the last activity finished before si
6. if (N[i-1] > N[k] + ti) then // Case 1
7. N[i] = N[i-1]
8. F[i] = F[i-1]
9. else // Case 2
10. N[i] = N[k] + ti
11. F[i] = I
12. Output N[n]

How to output Sn?
 Backtrack!
Time Complexity?
 O(n lg n)

COT 5407 2/9/17

!18 Approach to DP Problems
! Write down a recursive solution
! Use recursive solution to identify list of

subproblems to solve (there must be overlapping
subproblems for effective DP)

! Decide a data structure to store solutions to
subproblems (MEMOIZATION)

! Write down Recurrence relation for solutions of
subproblems

! Identify a hierarchy/order for subproblems
! Write down non-recursive solution/algorithm

COT 5407 2/9/17

!19 Longest Common Subsequence

 S1 = CORIANDER CORIANDER

 S2 = CREDITORS CREDITORS

Longest Common Subsequence(S1[1..9], S2[1..9])
= CRIR

COT 5407

Recursive Solution
LCS(S1, S2, m, n)
// m is length of S1 and n is length of S2
// Returns length of longest common subsequence
1. If (S1[m] == S2[n]), then
2. return 1 + LCS(S1, S2, m-1, n-1)
3. Else return larger of
4. LCS(S1, S2, m-1, n) and LCS(S1, S2, m, n-1)

Observation:
All the recursive calls correspond to subproblems to solve and they
include LCS(S1, S2, i, j) for all i between 1 and m, and all j between 1 and n

2/9/17

!20

COT 5407

Recurrence Relation & Memoization
! Recurrence Relation:

! LCS[i,j] = LCS[i-1, j-1] + 1, if S1[i] = S2[j])
 LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise

! Table (m X n table)
! Hierarchy of Solutions?

! Solve in row major order

2/9/17

!21

COT 5407 2/9/17

!22

LCS Problem
LCS_Length (X, Y)
1. m ! length[X]
2. n ! Length[Y]
3. for i = 1 to m
4. do c[i, 0] ! 0
5. for j =1 to n
6. do c[0,j] !0
7. for i = 1 to m
8. do for j = 1 to n
9. do if (xi = yj)
10. then c[i, j] ! c[i-1, j-1] + 1
11. b[i, j] ! “ ”
12. else if c[i-1, j] c[i, j-1]
13. then c[i, j] ! c[i-1, j]
14. b[i, j] ! “↑”
15. else
16. c[i, j] ! c[i, j-1]
17. b[i, j] ! “←”
18. return c[m,n]

