
CAP 5510 / CGS 5166

COT 6405: Analysis of
Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html
9/25/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 2/9/17

!2 Approach to DP Problems
! Write down a recursive solution
! Use recursive solution to identify list of

subproblems to solve (there must be overlapping
subproblems for effective DP)

! Decide a data structure to store solutions to
subproblems (MEMOIZATION)

! Write down Recurrence relation for solutions of
subproblems as suggested by the recursive sol

! Identify a hierarchy/order for subproblems
! Write down non-recursive solution/algorithm

COT 5407 2/9/17

!3 Longest Common Subsequence

 S1 = CORIANDER CORIANDER

 S2 = CREDITORS CREDITORS

Longest Common Subsequence(S1[1..9], S2[1..9])
= CRIR

COT 5407

Recursive Solution
LCS(S1, S2, m, n)
// m is length of S1 and n is length of S2
// Returns length of longest common subsequence
1. If (S1[m] == S2[n]), then
2. return 1 + LCS(S1, S2, m-1, n-1)
3. Else return larger of
4. LCS(S1, S2, m-1, n) and LCS(S1, S2, m, n-1)

Observation:
All the recursive calls correspond to subproblems to solve and they
include LCS(S1, S2, i, j) for all i between 1 and m, and all j between 1 and n

2/9/17

!4

COT 5407

Recurrence Relation & Memoization
! Recurrence Relation:

! LCS[i,j] = LCS[i-1, j-1] + 1, if S1[i] = S2[j])
 LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise

! Table (m X n table)
! Hierarchy of Solutions?

! Solve in row major order

2/9/17

!5

COT 5407 2/9/17

!6

LCS Problem
LCS_Length (X, Y)
1. m ! length[X]
2. n ! Length[Y]
3. for i = 0 to m
4. do c[i, 0] ! 0
5. for j =0 to n
6. do c[0,j] !0
7. for i = 1 to m
8. do for j = 1 to n
9. do if (xi = yj)
10. then c[i, j] ! c[i-1, j-1] + 1
11. b[i, j] ! “ ”
12. else if c[i-1, j] > c[i, j-1]
13. then c[i, j] ! c[i-1, j]
14. b[i, j] ! “↑”
15. else
16. c[i, j] ! c[i, j-1]
17. b[i, j] ! “←”
18. return c[m,n]

COT 5407 2/9/17

!7 LCS Example

COT 5407 2/9/17

!8

Dynamic Programming vs. Divide-&-conquer

! Divide-&-conquer works best when all subproblems are
independent. So, pick partition that makes algorithm
most efficient & simply combine solutions to solve entire
problem.

! Dynamic programming is needed when subproblems are
dependent; we don’t know where to partition the
problem.

 For example, let S1= {ALPHABET}, and S2 = {HABITAT}.
 Consider the subproblem with S1ʹ = {ALPH}, S2ʹ = {HABI}.
 Then, LCS (S1ʹ, S2ʹ) + LCS (S1-S1ʹ, S2-S2ʹ) ≠ LCS(S1, S2)
! Divide-&-conquer is best suited for the case when no

“overlapping subproblems” are encountered.
! In dynamic programming algorithms, we typically solve

each subproblem only once and store their solutions. But
this is at the cost of space.

COT 5407 2/9/17

!9 Dynamic programming vs Greedy
1. Dynamic Programming solves the sub-problems bottom up. The

problem can’t be solved until we find all solutions of sub-problems.
The solution comes up when the whole problem appears.

 Greedy solves the sub-problems from top down. We first need to
find the greedy choice for a problem, then reduce the problem to
a smaller one. The solution is obtained when the whole problem
disappears.

2. Dynamic Programming has to try every possibility before solving
the problem. It is much more expensive than greedy. However,
there are some problems that greedy can not solve while dynamic
programming can. Therefore, we first try greedy algorithm. If it fails
then try dynamic programming.

COT 5407 2/9/17

!10 Fractional Knapsack Problem
! Burglar’s choices:
 Items: x1, x2, …, xn
 Value: v1, v2, …, vn
 Max Quantity: q1, q2, …, qn
 Weight per unit quantity: w1, w2, …, wn
 Getaway Truck has a weight limit of B.
 Burglar can take “fractional” amount of any item.
 How can burglar maximize value of the loot?
! Greedy Algorithm works!
 Pick the maximum possible quantity of highest value per

weight item. Continue until weight limit of truck is reached.

COT 5407 2/9/17

!11 0-1 Knapsack Problem
! Burglar’s choices:
 Items: x1, x2, …, xn
 Value: v1, v2, …, vn
 Weight: w1, w2, …, wn
 Getaway Truck has a weight limit of B.
 Burglar cannot take “fractional” amount of item.
 How can burglar maximize value of the loot?
! Greedy Algorithm does not work! Why?
! Need dynamic programming!

COT 5407 2/9/17

!12 0-1 Knapsack Problem
! Subproblems?

! V[j, L] = Optimal solution for knapsack problem assuming a
truck of weight limit L and choice of items from set {1,2,…, j}.

! V[n, B] = Optimal solution for original problem
! V[1, L] = easy to compute for all values of L.

! Table of solutions?
! V[1..n, 1..B]

! Ordering of subproblems?
! Row-wise

! Recurrence Relation? [Either xj included or not]
! V[j, L] = max { V[j-1, L], vj + V[j-1, L-wj] }

COT 5407 2/9/17

!13 1-d, 2-d, 3-d Dynamic Programming
! Classification based on the dimension of the table

used to store solutions to subproblems.
! 1-dimensional DP

! Activity Problem
! 2-dimensional DP

! LCS Problem
! 0-1 Knapsack Problem
! Matrix-chain multiplication

! 3-dimensional DP
! All-pairs shortest paths problem

CAP 5510 / CGS 5166

Matrix Chain Product

! MCP[1,n] = Min
! MCP[1,k] + MCP[k+1,n] + cost(1,k,n)
! Since we don’t know the value of k

!We try every possible value of k

9/25/19

!14

CAP 5510 / CGS 5166

Amortized Analysis

9/25/19

!15

COT 6936 02/25/14

!16 Amortized Analysis

! Consider (worst-case) time complexity of sequence of n
operations, not cost of a single operation.

! Traditional Analysis: Cost of sequence of n operations = n S(n),
where S(n) = worst case cost of each of the n operations

! Amortized Cost = T(n)/n, where T(n) = worst case total cost of n
operations in the sequence.

! Amortized cost can be small even with some expensive
operations. Worst case may not occur in every operation, even
in worst case. Cost of operations often correlated.

COT 6936 02/25/14

!17 Problem 1: Binary Counter

! Data Structure: binary counter b.
! Operations: Inc(b).

! Cost of Inc(b) = number of bits flipped in the operation.
! What’s the total cost of N operations when this counter counts

up to integer N?
! Approach 1: simple analysis

! Size of counter is log(N). Worst case when every bit flipped. For N
operations, total worst-case cost = O(Nlog(N))

COT 6936 02/25/14

!18 Approach 2: Binary Counter
! Intuition: Worst case cannot happen all the time!
 000000
 000001
 000010
 000011
 000100
 000101
 000110
 000111

Bit 0 flips every time;
Bit 1 flips every other time;
Bit 2 flips every fourth time, etc…
Bit k flips every 2k time.
So the total bits flipped in N operations, when
the counter counts from 1 to N, will be = ?

NNNNT
k

k

N

k
k 2

2
1

2
)(

0

log

0

=<= ∑∑
∞

==

So the amortized cost will be T(N)/N = 2.

COT 6936 02/25/14

!19 Approach 3: Binary Counter

! For k bit counters, the total cost is
 t(k) = 2 x t(k-1) + 1
! So for N operations, T(N) = t(log(N)).
! t(k) = ?
! T(N) can be proved to be bounded by 2N.

COT 6936 02/25/14

!20 Amortized Analysis: Potential Method
! For n operations, the data structure goes through states: D0,

D1, D2, …, Dn with costs c1, c2, …, cn

! Define potential function Φ(Di): represents the potential
energy of data structure after ith operation.

! The amortized cost of the ith operation is defined by:

! The total amortized cost is

() ()1ˆ −Φ−Φ+= iiii DDcc

() ()() () ()

() ()() ∑∑

∑∑∑

==

==
−

=

+Φ−Φ−=

+Φ−Φ=Φ−Φ+=

n

i
in

n

i
i

n

i
in

N

i
iii

n

i
i

cDDc

cDDDDcc

1
0

1

1
0

1
1

1

ˆ

ˆ

COT 6936

Potential Method for Binary Counter
! Potential function = ??
! Φ(D) = # of 1’s in counter
! Assume that in i-th iteration Inc(b) changes

! 1 ➔ 0 (j bits)
! 0 ➔ 1 (1 bit)
! Φ(Di-1) = k; Φ(Di) = k – j + 1
! Change in potential = (k – j + 1) – k = 1-j
! Real cost = j + 1
! Amortized cost = Real cost + change in potential
! Amortized cost = j + 1 – j + 1 = 2

02/25/14

!21

COT 6936 02/25/14

!22 Problem 2: Stack Operations
! Data Structure: Stack
! Operations:

! Push(s,x) : Push object x into stack s.
! Cost: T(push) = O(1).

! Pop(s) : Pop the top object in stack s.
! Cost: T(pop) = O(1).

! MultiPop(s,k) ; Pop the top k objects in stack s.
! Cost: T(mp) = O(size(s)) worst case

! Assumption: Start with an empty stack
! Simple analysis: For N operations, maximum stack size = N. Worst-case cost of

MultiPop = O(N). Total worst-case cost of N operations is at most N x T(mp) = O(N2).

COT 6936 02/25/14

!23 Amortized analysis: Stack Operations

! Intuition: Worst case cannot happen all the time!
! Idea: pay a dollar for every operation, then count carefully.
! Pay $2 for each Push operation, one to pay for operation,

another for “future use” (pin it to object on stack).
! For Pop or MultiPop, instead of paying from pocket, pay for

operations with extra dollar pinned to popped objects.
! Total cost of N operations must be less than 2 x N
! Amortized cost = T(N)/N = 2.

COT 6936

Potential Method for Stack Problem
! Potential function Φ(D) = # of items in stack
! Push

! Change in potential = 1; Real cost = 1
! Amortized Cost = 2

! MultiPop [Assume j items popped in ith iter]
! Φ(Di-1) = k; Φ(Di) = k – j
! Real cost = j
! Change in potential = -j
! Amortized cost = Real cost + change in potential
! Amortized cost = j – j = 0

02/25/14

!24

Pop: j = 1

