
CAP 5510 / CGS 5166

COT 6405: Analysis of
Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html
9/30/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

CAP 5510 / CGS 5166

Amortized Analysis

9/30/19

!2

COT 6936 02/25/14

!3 Problem 1: Binary Counter

! Data Structure: binary counter b.
! Operations: Inc(b).

! Cost of Inc(b) = number of bits flipped in the operation.
! What’s the total cost of N operations when this counter counts

up to integer N?
! Approach 1: simple analysis

! Size of counter is log(N). Worst case when every bit flipped. For N
operations, total worst-case cost = O(Nlog(N))

COT 6936 02/25/14

!4 Amortized Analysis: Potential Method
! For n operations, the data structure goes through states: D0,

D1, D2, …, Dn with costs c1, c2, …, cn

! Define potential function Φ(Di): represents the potential
energy of data structure after ith operation.

! The amortized cost of the ith operation is defined by:

! The total amortized cost is

() ()1ˆ −Φ−Φ+= iiii DDcc

() ()() () ()

() ()() ∑∑

∑∑∑

==

==
−

=

+Φ−Φ−=

+Φ−Φ=Φ−Φ+=

n

i
in

n

i
i

n

i
in

N

i
iii

n

i
i

cDDc

cDDDDcc

1
0

1

1
0

1
1

1

ˆ

ˆ

COT 6936

Potential Method for Binary Counter
! Potential function = ??
! Φ(D) = # of 1’s in counter
! Assume that in i-th iteration Inc(b) changes

! 1 ➔ 0 (j bits)
! 0 ➔ 1 (1 bit)
! Φ(Di-1) = k; Φ(Di) = k – j + 1
! Change in potential = (k – j + 1) – k = 1-j
! Real cost = j + 1
! Amortized cost = Real cost + change in potential
! Amortized cost = j + 1 – j + 1 = 2

02/25/14

!5

COT 6936 02/25/14

!6 Problem 2: Stack Operations
! Data Structure: Stack
! Operations:

! Push(s,x) : Push object x into stack s.
! Cost: T(push) = O(1).

! Pop(s) : Pop the top object in stack s.
! Cost: T(pop) = O(1).

! MultiPop(s,k) ; Pop the top k objects in stack s.
! Cost: T(mp) = O(size(s)) worst case

! Assumption: Start with an empty stack
! Simple analysis: For N operations, maximum stack size = N. Worst-case cost of

MultiPop = O(N). Total worst-case cost of N operations is at most N x T(mp) = O(N2).

COT 6936 02/25/14

!7 Amortized analysis: Stack Operations

! Intuition: Worst case cannot happen all the time!
! Idea: pay a dollar for every operation, then count carefully.
! Pay $2 for each Push operation, one to pay for operation,

another for “future use” (pin it to object on stack).
! For Pop or MultiPop, instead of paying from pocket, pay for

operations with extra dollar pinned to popped objects.
! Total cost of N operations must be less than 2 x N
! Amortized cost = T(N)/N = 2.

COT 6936

Potential Method for Stack Problem
! Potential function Φ(D) = # of items in stack
! Push

! Change in potential = 1; Real cost = 1
! Amortized Cost = 2

! MultiPop [Assume j items popped in ith iter]
! Φ(Di-1) = k; Φ(Di) = k – j
! Real cost = j
! Change in potential = -j
! Amortized cost = Real cost + change in potential
! Amortized cost = j – j = 0

02/25/14

!8

Pop: j = 1

CAP 5510 / CGS 5166

Online Algorithms

9/30/19

!9

COT 6936

Online Problems

! Should I buy a car/skis/camping gear or rent them
when needed?

! Should I buy Google stocks today or sell them or
hold on to them?

! Should I work on my homework in Algorithms or
my homework in OS or on my research?

! Decisions have to be made based on past and
current request/task

1/23/14

!10

COT 6936

How to Analyze Online Algorithms?
! Competitive analysis

! Compare with optimal offline algorithm (OPT)
! Algorithm A is α-competitive if there exists

constants b such that for every sequence
of inputs σ:
! costA(σ) ≤ αcostOPT(σ) + b

1/23/14

!11

COT 6936

Ski Rental Problem
! Should I buy skis or rent them?

! Rental is $A per trip
! Purchase costs $B

! Idea:
! Rent for m trips, where

!m = B/A
! Then purchase skis

! Analysis:
! Competitiveness ratio = 2. Why?

1/23/14

!12

COT 6936

Paging Problem
! Given 2-level storage system

! Limited Faster Memory (k pages) “CACHE”
! Unlimited Slower Memory

! Input: Sequence of page requests
! Assumption: “Lazy” response (Demand Paging)

! If page is in CACHE, no changes to contents
! If page is not in CACHE, make place for it in CACHE by

replacing an existing page
! Need: A “page replacement” algorithm

1/23/14

!13

Infinite,
Online

COT 6936

Well-known Page Replacement
Algorithms
! LRU: evict page whose most recent access

was earliest among all pages
! FIFO: evict page brought in earliest
! LIFO: evict page brought in most recently
! LFU: evict page least frequently used

1/23/14

!14

COT 6936

Comparing online algorithms?
! Analyze: time? performance?

! Input length?
! Performance depends on request sequence

!Probabilistic models? Markov Decision process
! Competitive analysis [Sleator and Tarjan]

! Compare with optimal offline algorithm (OPT)
!OPT is clairvoyant; no prob assumptions; “worst-case”

! Algorithm A is α-competitive if there exists
constants b such that for every σ:
! costA(σ) ≤ αcostOPT(σ) + b

1/23/14

!15

Game between Cruel
Adversary and your

algorithm

COT 6936

Optimal Algorithm for Paging
! MIN (Longest Forward Distance): Evict the page

whose next access is latest.
! Cost: # of page faults
! Competitive Analysis: Compare

! # of page faults of algorithm A with
! # of page faults of algorithm MIN

! We want to compute the competitiveness of LRU,
LIFO, FIFO, LFU, etc.

1/23/14

!16

COT 6936

Lower Bound for any online algorithm
! Cannot achieve better than k-competitive!

! No deterministic algorithm is α-competitive, α < k
!Fix online algorithm A,
!Construct a request sequence σ, and
!Show that: costA(σ) ≥ k costOPT(σ)

! Sequence σ will only have k+1 possible pages
! make 1..k+1 the first k+1 requests
! make next request as the page evicted by A

!A will fault on every request
!OPT? Will not fault more than once every k requests

1/23/14

!17

Adversary Model

COT 6936

Upper Bound: LRU is k-Competitive
! Lemma 1: If any subseq has k+1 distinct pages,

MIN (any alg) faults at least once
! Lemma 2: Between 2 LRU faults on same page,

there must be k other distinct faults
! Let Τ be any subsequence of σ with exactly k faults for

LRU & with p accessed just before Τ.
! LRU cannot fault on same page twice within Τ
! LRU cannot fault on p within Τ
! Thus, p followed by Τ requests k+1 distinct pages and

MIN must fault at least once on Τ

1/23/14

!18

COT 6936

LRU is k-competitive
! Partition σ into subsequences as follows:

! Let s0 include the first request, p, and the first k faults for LRU
! Let si include subsequence after si-1 with the next k faults for LRU
! Argument applies for Τ = si, for every i > 0
! If both algorithms start with empty CACHE or identical CACHE,

then it applies to i = 0 also
! Otherwise, LRU incurs k extra faults

! Thus, costA(σ) ≤ k costOPT(σ) + k

1/23/14

!19

COT 6936

Other Page Replacement Algorithms

! FIFO is k-competitive (Homework!)
! MFU and LIFO?

1/23/14

!20

COT 6936

How to Analyze Online Algorithms?
! Competitive analysis

! Compare with optimal offline algorithm (OPT)
! Algorithm A is α-competitive if there exists

constants b such that for every sequence
of inputs σ:
! costA(σ) ≤ αcostOPT(σ) + b

1/23/14

!21

COT 6936

Alternative Analysis Technique

! Cannot consider requests separately since
! If costA = 1 and costOPT = 0, ratio = infinity

! So amortize on a sequence of requests
! We achieve this using a Potential Function

! Let’s first do this for LRU

1/23/14

!22

COT 6936

LRU Analysis using potential functions

! Define the potential function as follows:
! Φ(t) = Σxε (LRU – OPT) Rank(x)
! Here Rank(x) is its position in LRU counted from the least recently

used item
! Consider an arbitrary request
! Assume that OPT serves request first
! Then LRU serves request
! We will show that for each step t, we have

! costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t)

1/23/14

!23

COT 6936

LRU Analysis (Cont’d): OPT serves

! We will show that for each step t, we have
! costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t)

! If OPT has a hit, then
! costLRU(t) = costOPT(t) = ΔΦ = 0

! If OPT has a miss, then
! costLRU(t) = 0
! costOPT(t) = 1
! ΔΦ ≤ k

!Because OPT may evict something in LRU

1/23/14

!24

COT 6936

LRU Analysis (Cont’d): LRU serves
! We will show that for each step t, we have

! costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t)
! If LRU has a hit, then

! costLRU(t) = costOPT(t) = 0; ΔΦ ≤ 0
! If LRU has a miss, then

! costLRU(t) = 1; costOPT(t) = 0
! There exists at least one item x in LRU – OPT
! If x is evicted, then ΔΦ ≤ -w(x) ≤ -1
! If not, its rank is reduced by ≥ 1. Thus ΔΦ ≤ -1

1/23/14

!25

COT 6936

LRU Analysis

! Thus for each step t, we have
! costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t)

! Adding over all steps t, we get
! ΣcostLRU(t) + Σ(Φ(t) - Φ(t-1)) ≤ k ΣcostOPT(t)
! ΣcostLRU(t) + Φ(m) – Φ(0) ≤ k ΣcostOPT(t)
! But Φ(0) = 0, and
! Φ(m) ≥ 0
! Thus, costA(σ) ≤ k costOPT(σ)

1/23/14

!26

COT 6936

DBL(2c)

! DBL(2c) has 2 lists
! L1 is list of pages accessed once
! L2 is list of pages accessed once
! Any hit moves item to MRU(L2)
! Any miss has 2 cases

!If L1 has c items, then move new item to MRU(L1) and delete
LRU(L1)

!If L1 has at most c items, then move new item to MRU(L1) and
delete LRU(L2)

1/23/14

!27

COT 6936

Adaptive Replacement Cache (ARC)

1/23/14

!28

Megiddo &
Modha,
FAST 2003

COT 6936

Analyzing Rand Online Algorithms?

! Algorithm A is α-competitive if there exists
constants b such that for every sequence of
inputs σ:
! costA(σ) ≤ αcostOPT(σ) + b

! Randomized Algorithm R is α-competitive if
there exists constants b such that for every
sequence of inputs σ:
! E[costR(σ)] ≤ αcostOPT(σ) + b

1/23/14

!29

Adversary provides
request sequence at start

CAP 5510 / CGS 5166

What to read next?

! Heaps and Priority Queues
! Heap Sort

9/30/19

!30

