COT 6405: Analysis of

Algorithms

Giri NARASIMHAN
www.cs fiu.edu/~giri/teach/6405F19.html

http://www.cs.fiu.edu/~giri/teach/5407S19.html

Amortized Analysis

Problem 1: Binary Counter

» Data Structure: binary counter b.
» (QOperations: Inc(b).
» Cost of Inc(b) = number of bits flipped in the operation.

» What's the total cost of N operations when this counter counts
up to integer N?
» Approach 1: simple analysis

» Size of counter is log(N). Worst case when every bit flipped. For N
operations, total worst-case cost = O(Nlog(N))

COT 6936 02/25/14

Amortized Analysis: Potential Method

» For n operations, the data structure goes through states: D,
D,, D, ..., D,with costs c,, C,, ..., C,

» Define potential function @®(D,): represents the potential
energy of data structure after i, operation.

The amortized cost of the i, operation is defined by:
¢, =¢; + (I)(Di)_ (I)(Di—l X

» The tot

n n

Eéi = Z(Ci +(I)(Di)_ (I)(Di—l))= (I)(Dn)_ (I)(Do)+ Eci

i=1 i=]

COT 6936 2 C; = _((I)(Dn)_ (I)(Do))"' 2 G 02/25/14

S I

Potential Method for Binary Counter

= Potential function = ??

» (D) = # of 1's in counter

® Assume that in i-th iteration Inc(b) changes
= 1 0 (j bits)

O0->1(1bit)

®(D;_ ;) = k; ®(D;,) = k-j+1

Change in potential = (k- j + 1) -k = 1-j

Real cost = j + 1

Amortized cost = Real cost + change in potential

Amortized cost = j+1-j+1 =2

COT 6936 02/25/14

Problem 2: Stack Operations

» Data Structure: Stack

» (Operations:
» Push(s,x) : Push object x into stack s.
= Cost: T(push) =0(1).
» Pop(s) : Pop the top object in stack s.
= Cost: T(pop) = O(1).
» MultiPop(s,k) ; Pop the top k objects in stack s.
» Cost: T(mp) = O(size(s)) worst case
= Assumption: Start with an empty stack

» Simple anag/sis: For N operations, maximum stack size = N. Worst-case cost of
MultiPop = O(N). Total worst-case cost of N operations is at most N x T(mp) = O(N2).

COT 6936 02/25/14

Amortized analysis: Stack Operations

» |ntuition: Worst case cannot happen all the time!
» |dea: pay a dollar for every operation, then count carefully.

» Pay $2 for each Push operation, one to pay for operation,
another for “future use” (pin it to object on stack).

= For Pop or MultiPop, instead of paying from pocket, pay for
operations with extra dollar pinned to popped objects.

Total cost of N operations must be less than 2 x N
Amortized cost = T(N)/N = 2.

COT 6936 02/25/14

Potential Method for Stack Problem

» Potential function ®(D) = # of items in stack
» Push

® Change in potential = 1; Real cost = 1
Amortized Cost = 2

MultiPop [Assume j items popped in ith iter]

» &(D,_,) = k: ®(D;) = k -J :
e \(Pop:| =1 }

Change in potential = -j

»
= Amortized cost = Real cost + change in potential
™ Amortized cost = j-j=0

COT 6936 02/25/14

Online Algorithms

Online Problems

» Should | buy a car/skis/camping gear or rent them
when needed?

= Should | buy Google stocks today or sell them or
hold on to them?

= Should | work on my homework in Algorithms or
my homework in OS or on my research?

» Decisions have to be made based on past and
current request/task

COT 6936 1/23/14

How to Analyze Online Algorithms?

» Competitive analysis
» Compare with optimal offline algorithm (OPT)

» Algorithm A is a-competitive if there exists
constants b such that for every sequence
of inputs o:

» cost,(o) S acosty(o) + b

Ski Rental Problem

= Should | buy skis or rent them?
= Rental is SA per trip
» Purchase costs SB
Idea:
» Rent for m trips, where
=m = B/A
= Then purchase skis
» Analysis:
» Competitiveness ratio = 2. Why?

COT 6936 1/23/14

Paging Problem

» Given 2-level storage system
» |imited Faster Memory (k pages) “CACHE"
» Unlimited Slower Memory

Input: Sequence of page requests

Infinite,
Online

» Assumption: “Lazy” response (Demand Paging)
= |f page is in CACHE, no changes to contents

= |f page is notin CACHE, make place for it in CACHE by
replacing an existing page

» Need: A “page replacement” algorithm

COT 6936 1/23/14

Well-known Page Replacement
Algorithms

» |RU: evict page whose most recent access
was earliest among all pages

FIFO: evict page brought in earliest
» LIFO: evict page brought in most recently
» LFU: evict page least frequently used

Comparing online algorithms?

Game between Cruel

» Analyze: time? performance? Adversary and your
algorithm
» |nputlength?
» Performance depends on request sequence
= Probabilistic models? Markov Decision process
Competitive analysis [Sleator and Tarjan]
» Compare with optimal offline algorithm (OPT)
= OPT is clairvoyant; no prob assumptions; “worst-case”

» Algorithm A is a-competitive if there exists
constants b such that for every o:

» cost,(o) < acost,(0) + b

COT 6936 1/23/14

Optimal Algorithm for Paging

= MIN (Longest Forward Distance): Evict the page
whose next access is latest.

» Cost: # of page faults

Competitive Analysis: Compare
» # of page faults of algorithm A with
» # of page faults of algorithm MIN

» We want to compute the competitiveness of LRU,
LIFO, FIFO, LFU, eic.

COT 6936 1/23/14

Lower Bound for any online algorithm

» Cannot achieve better than k-competitive!
= No deterministic algorithm is a-competitive, a < k

= Fix online algorithm A,
= Construct a request sequence o, and Adversary Model
= Show that: cost,(o) 2 k costyp:(0) —
» Sequence o will only have k+1 possible pages
® make 1..k+1 the first k+1 requests
» make nextrequest as the page evicted by A

= A will fault on every request
= OPT? Will not fault more than once every k requests

COT 6936 1/23/14

Upper Bound: LRU is k-Competitive

» lemma 1: If any subseq has k+1 distinct pages,
MIN (any alg) faults at least once

» Lemma 2: Between 2 LRU faults on same page,
there must be k other distinct faults

» |Let T be any subsequence of o with exactily k faults for
LRU & with p accessed just before T.

= |RU cannot fault on same page twice within T
LRU cannot fault on p within T

» Thus, p followed by T requests k+1 distinct pages and
MIN must fault at least once on T

COT 6936 1/23/14

LRU is k-competitive

= Partition o into subsequences as follows:

» Let s, include the first request, p, and the first k faults for LRU

Let s, include subsequence after s, ; with the next k faults for LRU
Argument applies for T = s, for every i >0

If both algorithms start with empty CACHE or identical CACHE,
then it applies to i = 0 also

Otherwise, LRU incurs k exira faults
» Thus, cost,(o) < k costyp (o) + k

COT 6936 1/23/14

Other Page Replacement Algorithms

» FIFO is k-competitive (Homework!)
= MFU and LIFO?

How to Analyze Online Algorithms?

» Competitive analysis
» Compare with optimal offline algorithm (OPT)

= Algorithm A is a-competitive if there exists
constants b such that for every sequence
of inputs o:

» cost,(o) S acosty(o) + b

Alternative Analysis Technique

» Cannot consider requests separately since
» |f cost, =1 and cost,,; = 0, ratio = infinity
So amortize on a sequence of requests

» We achieve this using a Potential Function
» |ef’s first do this for LRU

6666666

LRU Analysis using potential functions

» Define the potential function as follows:
= () = L 1y - opry RaNk(x)

Here Rank(x) is its position in LRU counted from the least recently
used item

Consider an arbitrary request
Assume that OPT serves request first
Then LRU serves request

We will show that for each step t, we have
» costy(t) + D(t) - P(1-1) < k costyp(1)

COT 6936 1/23/14

LRU Analysis (Cont’d): OPT serves

» We will show that for each step t, we have
» cost (1) + D(t) - P(1-1) < k costyp(1)

= |f OPT has a hit, then
» cost (1) = costyp(t) = AD =0

= |f OPT has a miss, then
» cost,,(1)=0

» costyp(t) =1

» AD<k
= Because OPT may evict something in LRU

COT 6936 1/23/14

LRU Analysis (Cont’d): LRU serves

=» We will show that for each step t, we have
» cost (1) + P(1) - P(t-1) < k costyp(1)
= |f LRU has a hit, then
» cost . (f) = costy(1) =0; AD <0
= |f LRU has a miss, then
» cost (1) =1; costy(t) =0
» There exists at least one item x in LRU — OPT

» |f x is evicted, then A® < -w(x) < -1
= [f not, its rank is reduced by 2 1. Thus A® < -1

COT 6936 1/23/14

LRU Analysis

» Thus for each step t, we have
» cost (1) + P(1) - P(t-1) < k costyp(1)
= Adding over all steps t, we get
» Jcost (1) + I(P(1) - D(1-1)) < k Icostyp(t)
» Ycost (1) + D(m) - P(0) < k Lcostp(t)
=» But ®(0) =0, and
» d(m)20
» Thus, cost,(o) < k costyp(0)

COT 6936 1/23/14

DBL(2c)

=» DBL(2c) has 2 lists
» L, is list of pages accessed once

» L, is list of pages accessed once
= Any hit moves item to MRU(L,)
»

Any miss has 2 cases

= |f L, has c items, then move new item to MRU(L,) and delete
LRU(L,)

= |If L, has at most c items, then move new item to MRU(L,) and
delete LRU(L,)

COT 6936 1/23/14

Adaptive Replacement Cache (ARC)

Megiddo &
Modha,
FAST 2003

~ee
T o Uy THO souapeot SRworT™ o, * . -
lamaza o St p =0y te LRl s T 0., T oo 5;: O ooty

Fr @wiry ¢t > L &d @y =, O o0 Oy O'e of i S00Owng o Cliis snsl OCOur
oo T o Tl T2 A v TR Teo sasssvend s ARSI swd TENLS 30

Mowe . 10 MR cosilen i T2
Cw Vi 50 8 0 B A e miss oop. W) e ocsumea o ARCH o oo DELI 240

1 18] = 1%

AJAFTATION. U zum e & §F 3 e § -
e = © - {ld: L] eerese

MOMLADC . o MO) P0onm O 10 Te NI poaitons wn By (Rt Wt o % T Caulre).
Ot W wy @ I A Caiet WRin pais. PEL) Mt SOSasmed wn MWD - e, DL)

s " log =
18,115, othareisa

REPLACE /2) MoOve r, fom 3, e NAL pocion o T (S e » 1 T cathal
Coe V.o, ant 0 T\, 058, 0T, » 8B, A cares mxit M O0osved an AT o ard DEL 20).

ADAPTATION: LSS » = zuax {» .0} e £, =

Gt AL L, T 0 B, Mt @xacly « gy
M < a9
Doete AU pge » . REFLACE (7. p)

e B, S ergty. Dalite LA gy o T, (GO srowve 1 Hom e Ccfel

-
G B L. =T O ronoos o oooes
MM =T = 1B « 15 = <
Cwtn 1530 pros = J7. 12 (750 & |7 150.] « | 8.0 w2eh
REPLACE (.. ph

~y
Fraly. fetch +. 0 Mo oo 0 rowve 1 1 MELU postion n T

Sutwoutine REP_ACE(=, »
MU s O Ty D | 1H] ocoeck T PIO LT S W D 30 ¥ = puy)
Doane T LA 250 i T (850 sardrwe it e Gt ad Mowe IR MIL Sosdions N 5, .
~—a.
Doate T LA 2uge i T @S0 samdwe iT Tom P ol and mowe I M3 oosiion n 5.
e

COT 6936 1/23/14

Analyzing Rand Online Algorithms?

» Algorithm A is a-competitive if there exists
constants b such that for every sequep

prs C. Adversary provides
» cost,(o) < acosty(o) + b request sequence at start

=» Randomized Algorithm R is a-competitive if
there exists constants b such that for every
sequence of inputs o:

» E[cost(0)] < acost(0) +b

What to read nexi?

=» Heaps and Priority Queues
» Heap Sort

