COT 6405: Analysis of Algorithms Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html

CAP 5510 / CGS 5166

Amortized Analysis

CAP 5510 / CGS 5166

Problem 1: Binary Counter

- Data Structure: <u>binary counter</u> b.
- Operations: Inc(b).
 - Cost of Inc(b) = number of bits flipped in the operation.
- What's the total cost of N operations when this counter counts up to integer N?
- Approach 1: simple analysis
 - Size of counter is log(N). Worst case when every bit flipped. For N operations, total worst-case cost = O(Nlog(N))

Amortized Analysis: Potential Method

- For n operations, the data structure goes through states: D₀, D₁, D₂, ..., D_n with costs c₁, c₂, ..., c_n
- Define potential function $\Phi(D_i)$: represents the <u>potential</u> <u>energy</u> of data structure after i_{th} operation.
 - The amortized cost of the i_{th} operation is defined by: $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
- The total amortized cost is $\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})) = \Phi(D_{n}) - \Phi(D_{0}) + \sum_{i=1}^{n} c_{i}$ COT 6936 $\sum_{i=1}^{n} c_{i} = -(\Phi(D_{n}) - \Phi(D_{0})) + \sum_{i=1}^{n} \hat{c}_{i}$

02/25/14

Potential Method for Binary Counter

- Potential function = ??
- $\Phi(D) = \#$ of 1's in counter
- Assume that in i-th iteration Inc(b) changes
 - 1 → 0 (j bits)
 - $0 \rightarrow 1$ (1 bit)
 - $\Phi(D_{i-1}) = k; \Phi(D_i) = k j + 1$
 - Change in potential = (k j + 1) k = 1-j
 - Real cost = j + 1
 - Amortized cost = Real cost + change in potential
 - Amortized cost = j + 1 j + 1 = 2

Problem 2: Stack Operations

- Data Structure: <u>Stack</u>
- Operations:

- Push(s,x) : Push object x into stack s.
 - Cost: T(push) = O(1).
- Pop(s) : Pop the top object in stack s.
 - Cost: T(pop) = O(1).
- MultiPop(s,k) ; Pop the top k objects in stack s.
 - Cost: T(mp) = O(size(s)) worst case
- Assumption: Start with an empty stack
- Simple analysis: For N operations, maximum stack size = N. Worst-case cost of MultiPop = O(N). Total worst-case cost of N operations is at most N x T(mp) = O(N²).

Amortized analysis: Stack Operations

- Intuition: Worst case cannot happen all the time!
- Idea: pay a dollar for every operation, then count carefully.
- Pay \$2 for each Push operation, one to pay for operation, another for "future use" (pin it to object on stack).
- For Pop or MultiPop, instead of paying from pocket, pay for operations with extra dollar pinned to popped objects.
- Total cost of N operations must be less than 2 x N
- Amortized cost = T(N)/N = 2.

Potential Method for Stack Problem

- Potential function $\Phi(D) = \#$ of items in stack
- Push

- Change in potential = 1; Real cost = 1
- Amortized Cost = 2
- MultiPop [Assume j items popped in ith iter]
 - $\Phi(D_{i-1}) = k; \Phi(D_i) = k j$
 - Real cost = j

- Change in potential = -j
- Amortized cost = Real cost + change in potential
- Amortized cost = j j = 0

Online Algorithms

CAP 5510 / CGS 5166

¹⁰ Online Problems

- Should I buy a car/skis/camping gear or rent them when needed?
- Should I buy Google stocks today or sell them or hold on to them?
- Should I work on my homework in Algorithms or my homework in OS or on my research?
- Decisions have to be made based on past and current request/task

How to Analyze Online Algorithms?

- Competitive analysis
 - Compare with optimal offline algorithm (OPT)
- Algorithm A is a-competitive if there exists constants b such that for every sequence of inputs σ:
 - Cost_A(σ) ≤ acost_{OPT}(σ) + b

¹² Ski Rental Problem

- Should I buy skis or rent them?
 - Rental is \$A per trip
 - Purchase costs \$B
 - Idea:
 - Rent for m trips, where
 - -m = B/A
 - Then purchase skis
- Analysis:
 - Competitiveness ratio = 2. Why?

Paging Problem

- Given 2-level storage system
 - Limited Faster Memory (k pages) "CACHE"
 - Unlimited Slower Memory
- Input: Sequence of page requests

Assumption: "Lazy" response (Demand Paging)

- If page is in CACHE, no changes to contents
- If page is not in CACHE, make place for it in CACHE by replacing an existing page
- Need: A "page replacement" algorithm

13

Infinite,

Online

Well-known Page Replacement Algorithms

- LRU: evict page whose most recent access was earliest among all pages
- FIFO: evict page brought in earliest
- LIFO: evict page brought in most recently
- LFU: evict page least frequently used

Comparing online algorithms?

- Analyze: time? performance?
 - Input length?

Game between Cruel Adversary and your algorithm

- Performance depends on request sequence
 - Probabilistic models? Markov Decision process
- Competitive analysis [Sleator and Tarjan]
 - Compare with optimal offline algorithm (OPT)
 - OPT is clairvoyant; no prob assumptions; "worst-case"
- Algorithm A is a-competitive if there exists constants b such that for every σ:
 - $cost_A(\sigma) \le acost_{OPT}(\sigma) + b$

Optimal Algorithm for Paging

- MIN (Longest Forward Distance): Evict the page whose next access is latest.
- Cost: # of page faults
- Competitive Analysis: Compare
 - # of page faults of algorithm A with
 - # of page faults of algorithm MIN
- We want to compute the competitiveness of LRU, LIFO, FIFO, LFU, etc.

Lower Bound for any online algorithm

- Cannot achieve better than k-competitive!
 - No deterministic algorithm is a-competitive, a < k</p>
 - Fix online algorithm A,
 - Construct a request sequence σ , and
 - Show that: $cost_A(\sigma) \ge k cost_{OPT}(\sigma)$
- Sequence σ will only have k+1 possible pages
 - make 1..k+1 the first k+1 requests
 - make next request as the page evicted by A
 - A will fault on every request
 - OPT? Will not fault more than once every k requests

17

Adversary Model

Upper Bound: LRU is k-Competitive

- Lemma 1: If any subseq has k+1 distinct pages, MIN (any alg) faults at least once
- Lemma 2: Between 2 LRU faults on same page, there must be k other distinct faults
 - Let T be any subsequence of σ with exactly k faults for LRU & with p accessed just before T.
 - LRU cannot fault on same page twice within T
 - LRU cannot fault on p within T
 - Thus, p followed by T requests k+1 distinct pages and MIN must fault at least once on T

LRU is k-competitive

- Partition σ into subsequences as follows:
 - Let s₀ include the first request, p, and the first k faults for LRU
 - Let s_i include subsequence after s_{i-1} with the next k faults for LRU
 - Argument applies for T = s_i, for every i > 0
 - If both algorithms start with empty CACHE or identical CACHE, then it applies to i = 0 also
 - Otherwise, LRU incurs k extra faults
- ► Thus, $cost_A(\sigma) \le k cost_{OPT}(\sigma) + k$

Other Page Replacement Algorithms

FIFO is k-competitive (Homework!) MFU and LIFO?

How to Analyze Online Algorithms?

- Competitive analysis
 - Compare with optimal offline algorithm (OPT)
- Algorithm A is a-competitive if there exists constants b such that for every sequence of inputs σ:
 - Cost_A(σ) ≤ acost_{OPT}(σ) + b

Alternative Analysis Technique

Cannot consider requests separately since
 If cost_A = 1 and cost_{OPT} = 0, ratio = infinity

- So amortize on a sequence of requests
- We achieve this using a Potential Function
 - Let's first do this for LRU

LRU Analysis using potential functions

Define the potential function as follows:

- $\Phi(t) = \Sigma_{x \in (LRU OPT)} Rank(x)$
- Here Rank(x) is its position in LRU counted from the least recently used item
- Consider an arbitrary request
- Assume that OPT serves request first
- Then LRU serves request
- We will show that for each step t, we have
 - $cost_{LRU}(t) + Φ(t) Φ(t-1) \le k cost_{OPT}(t)$

LRU Analysis (Cont'd): OPT serves

- We will show that for each step t, we have
 - $cost_{LRU}(t) + Φ(t) Φ(t-1) \le k cost_{OPT}(t)$
- If OPT has a hit, then
 - $cost_{LRU}(t) = cost_{OPT}(t) = \Delta \Phi = 0$
- If OPT has a miss, then
 - cost_{LRU}(t) = 0
 - cost_{OPT}(t) = 1
 - ΔΦ ≤ k
 - Because OPT may evict something in LRU

LRU Analysis (Cont'd): LRU serves

- We will show that for each step t, we have
 - Cost_{LRU}(t) + Φ(t) Φ(t-1) ≤ k cost_{OPT}(t)
- If LRU has a hit, then
 - $cost_{LRU}(t) = cost_{OPT}(t) = 0; \Delta \Phi \leq 0$
 - If LRU has a miss, then
 - cost_{LRU}(t) = 1; cost_{OPT}(t) = 0
 - There exists at least one item x in LRU OPT
 - If x is evicted, then $\Delta \Phi \leq -w(x) \leq -1$
 - If not, its rank is reduced by ≥ 1 . Thus $\Delta \Phi \leq -1$

LRU Analysis

- Thus for each step t, we have
 - Cost_{LRU}(t) + Φ(t) Φ(t-1) ≤ k cost_{OPT}(t)
- Adding over all steps t, we get
 - Σcost_{LRU}(t) + Σ(Φ(t) Φ(t-1)) ≤ k Σcost_{OPT}(t)
 - Σcost_{LRU}(t) + Φ(m) − Φ(0) ≤ k Σcost_{OPT}(t)
 - But Φ(0) = 0, and
 - Φ(m) ≥ 0
 - Thus, $cost_A(\sigma) \le k cost_{OPT}(\sigma)$

27

DBL(2c)

- DBL(2c) has 2 lists
 - L₁ is list of pages accessed once
 - L₂ is list of pages accessed once
 - Any hit moves item to MRU(L₂)
 - Any miss has 2 cases
 - If L₁ has c items, then move new item to MRU(L₁) and delete LRU(L₁)
 - If L₁ has at most c items, then move new item to MRU(L₁) and delete LRU(L₂)

28

Adaptive Replacement Cache (ARC)

Megiddo & Modha, FAST 2003

ALC(1)

Let ut The request offering r_1, r_2, \dots, r_{n-1} . Let T_1, P_2, T_2, P_3 being P_3 being P_3

For every t ≥ 1 and any x₁, one and only one of the following four cases must occur. Case 1, at is in T1 or T1. A case init les occurred in APIC(c) and DBL(3c). Mave at to MPU position in T1.

Case III: r, is in B₂. A cashe miss (esp. hit) has occurred in ARC(+) (resp. D6L(2+)).

	ADAPTATION:	Use $p = \min \{p + \delta, c\}$ w	where $\delta_1 = \left\{$	[1	$ B_1 \ge B_2 $
				[[#1]/[#1]	otherwise.

REPLACE(a), p). Move a 1 from D₁ to the NRU position in P₂ (aso feeth a) to the cashe).

Gase III: a, is in D). A cache miss (sep. hit) has occurred in ARO(.) (resp. DOL(2-)).

ADAPTATION: Update
$$j = \max \{j - \delta_1, 0\}$$
 where $\delta_j = \begin{cases} 1 & \text{if } \|D_{ij}\| \ge \|D_{ij}\| \\ \|B_{ij}\|/\|B_{j}\| & \text{otherwise.} \end{cases}$

REPLACE (x_i, p) . Move x_i from ∂_2 to the NRU position in T_2 (aso fact x_i to the cashe).

Case IV: r₁ is not in T₁ U B₁ U T₂ U B₂. A cashe miss has occurred in ARC(c) and DBL(2c).

```
Case A: L_1 = T_1 \cup B_1 has exactly < pages.
                    11151 < 4
                            Delete URU page in B1. REFLACE(x1.p).
                    0000
                            Here B<sub>1</sub> is empty. Delete LRU page in T<sub>1</sub> (abo remove it from the cache).
                    enar
             Case 8: L_1 = T_1 \cup B_1 has less than \epsilon pages.
                    ||f_1||_{T_1} + ||T_1|| + ||B_1|| + ||B_2|| \ge \epsilon)
                            Device LEU rope in B_2, if (|T_1| + |T_2| + |B_1| + |B_2| = 2\epsilon).
                            REPLACE(a), p).
                    and
          Finally, fetch x<sub>1</sub> to the cache and nove it to MRU position in T<sub>1</sub>.
Subroutine REPLACE(x1.7)
  If (||T_1|| \in no empty) and (||T_1|| ecceeds the larget <math>p) or (r_1 \in in ||T_2|| arg ||T_1| = p_1).
          Delete the LRU page in T_1 (also remove it from the cache), and move it to MRU position in J_1.
   and the second
          Delete the LRU page in T_2 (also remove it from the cache), and move it to MRU position in B_2.
  ALC: NO
```

Analyzing Rand Online Algorithms?

- Algorithm A is a-competitive if there exists constants b such that for every sequence of inputs σ:
 - − cost_A(σ) ≤ acost_{OPT}(σ) + b

Adversary provides request sequence at start

- Randomized Algorithm R is a-competitive if there exists constants b such that for every sequence of inputs σ :
- $E[cost_R(\sigma)] \le acost_{OPT}(\sigma) + b$

³⁰ What to read next?

Heaps and Priority Queues Heap Sort