COT 6405: Analysis of Algorithms
 Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html

Amortized Analysis

Problem 1: Binary Counter

- Data Structure: binary counter b.
- Operations: Inc(b).
- Cost of $\operatorname{Inc}(\mathrm{b})=$ number of bits flipped in the operation.

What's the total cost of N operations when this counter counts up to integer N ?

- Approach 1: simple analysis
- Size of counter is $\log (\mathrm{N})$. Worst case when every bit flipped. For N operations, total worst-case cost $=0(\mathrm{Nlog}(\mathrm{N}))$

Amortized Analysis: Potential Method

- For n operations, the data structure goes through states: D_{0}, $D_{1}, D_{2}, \ldots, D_{n}$ with costs $c_{1}, c_{2}, \ldots, c_{n}$
- Define potential function $\Phi\left(\mathrm{D}_{\mathrm{i}}\right)$: represents the potential energy of data structure after $i_{\text {th }}$ operation.
The amortized cost of the $i_{t h}$ operation is defined by:

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

- The total amortized cost is

$$
\begin{aligned}
& \sum_{i=1}^{n} \hat{c}_{i}=\sum_{i=1}^{N}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)=\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)+\sum_{i=1}^{n} c_{i} \\
& \sum_{i=1}^{n} c_{i}=-\left(\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)\right)+\sum_{i=1}^{n} \hat{c}_{i}
\end{aligned}
$$

Potential Method for Binary Counter

- Potential function = ??
- $\Phi(\mathrm{D})=\#$ of 1's in counter
- Assume that in i-th iteration $\operatorname{Inc}(b)$ changes
- $1 \rightarrow 0$ (j bits)
- $0 \rightarrow 1$ (1 bit)
- $\Phi\left(D_{i-1}\right)=k ; \Phi\left(D_{i}\right)=k-j+1$
- Change in potential $=(k-j+1)-k=1-j$
- Real cost $=\mathrm{j}+1$
- Amortized cost = Real cost + change in potential
- Amortized cost $=\mathrm{j}+1-\mathrm{j}+1=2$

Problem 2: Stack Operations

- Data Structure: Stack
- Operations:
- Push(s,x) : Push object x into stack s.
- Cost: T (push) $=0(1)$.
- Pop(s) : Pop the top object in stack s.
- Cost: $\mathrm{T}(\mathrm{pop})=0(1)$.
- MultiPop(s,k) ; Pop the top k objects in stack s.
- Cost: $\mathrm{T}(\mathrm{mp})=0$ (size(s)) worst case
- Assumption: Start with an empty stack
- Simple analysis: For N operations, maximum stack size $=\mathrm{N}$. Worst-case cost of MultiPop $=0(\mathrm{~N})$. Total worst-case cost of N operations is at most $\mathrm{NxT}(\mathrm{mp})=0\left(\mathrm{~N}^{2}\right)$.

Amortized analysis: Stack Operations

- Intuition: Worst case cannot happen all the time!
- Idea: pay a dollar for every operation, then count carefully.
- Pay $\$ 2$ for each Push operation, one to pay for operation, another for "future use" (pin it to object on stack).
- For Pop or MultiPop, instead of paying from pocket, pay for operations with extra dollar pinned to popped objects.
- Total cost of N operations must be less than $2 \times \mathrm{N}$
- Amortized cost = $\mathrm{T}(\mathrm{N}) / \mathrm{N}=2$.

Potential Method for Stack Problem

- Potential function $\Phi(\mathrm{D})=\#$ of items in stack
- Push
- Change in potential $=1$: Real cost $=1$
- Amortized Cost = 2

MultiPop [Assume j items popped in $i^{\text {th }}$ iter]

- $\Phi\left(D_{i-1}\right)=k ; \Phi\left(D_{i}\right)=k-j$
- Real cost $=j$

$$
\text { Pop: } j=1
$$

- Change in potential $=-j$
- Amortized cost $=$ Real cost + change in potential
- Amortized cost $=\mathrm{j}-\mathrm{j}=0$

Online Algorithms

Online Problems

- Should I buy a car/skis/camping gear or rent them when needed?
- Should I buy Google stocks today or sell them or hold on to them?
- Should I work on my homework in Algorithms or my homework in OS or on my research?
- Decisions have to be made based on past and current request/task

How to Analyze Online Algorithms?

- Competitive analysis
- Compare with optimal offline algorithm (OPT)
- Algorithm A is a-competitive if there exists constants b such that for every sequence of inputs σ :
- $\operatorname{cost}_{\mathrm{A}}(\sigma) \leq \operatorname{acost}_{\mathrm{OPT}}(\sigma)+\mathrm{b}$

Ski Rental Problem

- Should I buy skis or rent them?
- Rental is \$A per trip
- Purchase costs \$B

Idea:

- Rent for m trips, where - $\mathrm{m}=\mathrm{B} / \mathrm{A}$
- Then purchase skis
- Analysis:
- Competitiveness ratio $=2$. Why?

Paging Problem

- Given 2-level storage system
- Limited Faster Memory (k pages) "CACHE"
- Unlimited Slower Memory

Input: Sequence of page requests

Infinite, Online

- Assumption: "Lazy" response (Demand Paging)
- If page is in CACHE, no changes to contents
- If page is not in CACHE, make place for it in CACHE by replacing an existing page
- Need: A "page replacement" algorithm

Well-known Page Replacement Algorithms

- LRU: evict page whose most recent access was earliest among all pages FIFO: evict page brought in earliest LIFO: evict page brought in most recently
- LFU: evict page least frequently used

Comparing online algorithms?

- Analyze: time? performance?
- Input length?
- Performance depends on request sequence - Probabilistic models? Markov Decision process Competitive analysis [Sleator and Tarjan]
- Compare with optimal offline algorithm (OPT) - OPT is clairvoyant; no prob assumptions; "worst-case"
- Algorithm A is a-competitive if there exists constants b such that for every σ :
- $\operatorname{cost}_{A}(\sigma) \leq a \operatorname{cost}_{\text {OPT }}(\sigma)+b$

Optimal Algorithm for Paging

- MIN (Longest Forward Distance): Evict the page whose next access is latest.
- Cost: \# of page faults
- Competitive Analysis: Compare
- \# of page faults of algorithm A with
- \# of page faults of algorithm MIN
- We want to compute the competitiveness of LRU, LIFO, FIFO, LFU, etc.

${ }^{17}$ Lower Bound for any online algorithm

- Cannot achieve better than k-competitive!
- No deterministic algorithm is a-competitive, $a<k$ - Fix online algorithm A,
- Construct a request sequence σ, and - Show that: $\operatorname{cost}_{\mathrm{A}}(\sigma) \geq \mathrm{k} \operatorname{cost}_{\text {OPI }}(\sigma)$

Sequence σ will only have $k+1$ possible pages

- make $1 . . \mathrm{k}+1$ the first $\mathrm{k}+1$ requests
- make next request as the page evicted by A
- A will fault on every request
- OPT? Will not fault more than once every k requests

Upper Bound: LRU is k-Competitive

- Lemma 1: If any subseq has $\mathrm{k}+1$ distinct pages, MIN (any alg) faults at least once
- Lemma 2: Between 2 LRU faults on same page, there must be k other distinct faults
- Let T be any subsequence of σ with exactly k faults for LRU \& with p accessed just before T .
- LRU cannot fault on same page twice within T
- LRU cannot fault on p within T
- Thus, p followed by T requests $\mathrm{k+1}$ distinct pages and MIN must fault at least once on T

LRU is k -competitive

- Partition σ into subsequences as follows:
- Let s_{0} include the first request, p, and the first k faults for LRU
- Let s_{i} include subsequence after s_{i-1} with the next k faults for LRU
- Argument applies for $\mathrm{T}=\mathrm{s}_{\mathrm{i}}$, for every $\mathrm{i}>0$
- If both algorithms start with empty CACHE or identical CACHE, then it applies to $\mathbf{i}=0$ also
- Otherwise, LRU incurs k extra faults
- Thus, $\operatorname{cost}_{A}(\sigma) \leq k \operatorname{cost}_{\text {OPT }}(\sigma)+k$

Other Page Replacement Algorithms

- FIFO is k-competitive (Homework!) - MFU and LIFO?

21
 How to Analyze Online Algorithms?

- Competitive analysis
- Compare with optimal offline algorithm (OPT) Algorithm \mathbf{A} is a-competitive if there exists constants b such that for every sequence of inputs σ :
- $\operatorname{cost}_{\mathrm{A}}(\sigma) \leq \operatorname{acost}_{\mathrm{OPI}}(\sigma)+\mathrm{b}$

Alternative Analysis Technique

- Cannot consider requests separately since
- If $\operatorname{cost}_{A}=1$ and cost ${ }_{\text {OPT }}=0$, ratio $=$ infinity So amortize on a sequence of requests We achieve this using a Potential Function
- Let's first do this for LRU

LRU Analysis using potential functions

- Define the potential function as follows:
- $\Phi(\mathrm{t})=\Sigma_{\mathrm{x} \mathrm{\varepsilon}(\text { LRU - OPT) }} \operatorname{Rank}(\mathrm{x})$
- Here Rank(x) is its position in LRU counted from the least recently used item
Consider an arbitrary request
- Assume that OPT serves request first
- Then LRU serves request
- We will show that for each step t, we have
- $\operatorname{cost}_{\text {LRU }}(\mathrm{t})+\Phi(\mathrm{t})-\Phi(\mathrm{t}-1) \leq \mathrm{k} \operatorname{cost}_{\text {OPI }}(\mathrm{t})$

LRU Analysis (Cont'd): OPT serves

- We will show that for each step t, we have
- $\operatorname{cost}_{\text {LRU }}(\mathrm{t})+\Phi(\mathrm{t})-\Phi(\mathrm{t}-1) \leq \mathrm{k} \operatorname{cost}_{\text {OPT }}(\mathrm{t})$
- If OPT has a hit, then
- $\operatorname{cost}_{\text {LRU }}(\mathrm{t})=\operatorname{cost}_{\text {OPT }}(\mathrm{t})=\Delta \Phi=0$

If OPT has a miss, then

- $\operatorname{cost}_{\text {LRU }}(\mathrm{t})=0$
- $\operatorname{cost}_{\text {OPT }}(\mathrm{t})=1$
- $\Delta \Phi \leq k$
- Because OPT may evict something in LRU

LRU Analysis (Cont'd): LRU serves

- We will show that for each step t, we have - $\operatorname{cost}_{\text {LRU }}(\mathrm{t})+\Phi(\mathrm{t})-\Phi(\mathrm{t}-1) \leq \mathrm{k} \operatorname{cost}_{\text {OPT }}(\mathrm{t})$
- If LRU has a hit, then
- $\operatorname{cost}_{\text {LRU }}(\mathrm{t})=\operatorname{cost}_{\text {OPI }}(\mathrm{t})=0 ; \Delta \Phi \leq 0$

If LRU has a miss, then

- $\operatorname{cost}_{\text {LRu }}(\mathrm{t})=1 ; \operatorname{cost}_{\text {OPI }}(\mathrm{t})=0$
- There exists at least one item x in LRU - OPT
- If x is evicted, then $\Delta \Phi \leq-\mathrm{w}(\mathrm{x}) \leq-1$
- If not, its rank is reduced by ≥ 1. Thus $\Delta \Phi \leq-1$
- Thus for each step t, we have
- $\operatorname{cost}_{\text {LRu }}(\mathrm{t})+\Phi(\mathrm{t})-\Phi(\mathrm{t}-1) \leq \mathrm{k} \operatorname{cost}_{\text {Opit }}(\mathrm{t})$
- Adding over all steps t, we get
- $\Sigma \operatorname{cost}_{\text {LRU }}(\mathrm{t})+\Sigma(\Phi(\mathrm{t})-\Phi(\mathrm{t}-1)) \leq \mathrm{k} \operatorname{cost}_{\text {Opt }}(\mathrm{t})$
- $\operatorname{\Sigma cost}_{\text {LRu }}(\mathrm{t})+\Phi(\mathrm{m})-\Phi(0) \leq k \operatorname{cost}_{\text {OPT }}(\mathrm{t})$
- But $\Phi(0)=0$, and
- $\Phi(\mathrm{m}) \geq 0$
- Thus, $\operatorname{cost}_{\mathrm{A}}(\sigma) \leq \mathrm{k} \operatorname{cost}_{\text {OPT }}(\sigma)$

DBL(2c)

- DBL(2c) has 2 lists
- L_{1} is list of pages accessed once
- L_{2} is list of pages accessed once
- Any hit moves item to $\operatorname{MRU}\left(\mathrm{L}_{2}\right)$
- Any miss has 2 cases
- If L_{1} has c items, then move new item to $\operatorname{MRU}\left(L_{1}\right)$ and delete $\operatorname{LRU}\left(\mathrm{L}_{1}\right)$
- If L_{1} has at most c items, then move new item to $\operatorname{MRU}\left(L_{1}\right)$ and delete $\operatorname{LRU}\left(\mathrm{L}_{2}\right)$

Adaptive Replacement Cache (ARC)

Megiddo \&
Modha,
FAST 2003
Nnctor
 For avey $t \geq 1$ exd any x, ane and only one of hee following four owen met cour.

$$
\text { Cree A: } L_{1}-T \text { U } A_{1} \text { now exady } \text { c prose }
$$

(TND PEPLACE (m, p)
Frally, fedch an, to the aute ard rove it to Mrul poestion in T,
Subrowina REPACE (n, -)

Analyzing Rand Online Algorithms?

- Algorithm A is a-competitive if there exists constants b such that for every sequence of inputs σ :
- $\operatorname{cost}_{\mathrm{A}}(\sigma) \leq \operatorname{acost}_{\text {OPI }}(\sigma)+b$

Adversary provides request sequence at start

Randomized Algorithm R is a-competitive if there exists constants b such that for every sequence of inputs σ :

- $E\left[\operatorname{cost}_{\mathrm{R}}(\sigma)\right] \leq \operatorname{acost}_{\text {OPT }}(\sigma)+b$
- Heaps and Priority Queves
- Heap Sort

