COT 6405: Analysis of

Algorithms

Giri NARASIMHAN
www.cs fiu.edu/~giri/teach/6405F19.html

1111111

http://www.cs.fiu.edu/~giri/teach/5407S19.html

How to Analyze Online Algorithms?

» Competitive analysis
» Compare with optimal offline algorithm (OPT)

= Algorithm A is a-competitive if there exists
constants b such that for every sequence
of inputs o:

» cost,(o) S acosty(o) + b

Alternative Analysis Technique

» Cannot consider requests separately since
» |f cost, =1 and cost,,; = 0, ratio = infinity
So amortize on a sequence of requests

» We achieve this using a Potential Function
» |ef’s first do this for LRU

6666666

LRU Analysis using potential functions

» Define the potential function as follows:
= () = L 1y - opry RaNk(x)

Here Rank(x) is its position in LRU counted from the least recently
used item

Consider an arbitrary request
Assume that OPT serves request first
Then LRU serves request

We will show that for each step t, we have
» costy(t) + D(t) - P(1-1) < k costyp(1)

COT 6936 1/23/14

LRU Analysis (Cont’d): OPT serves

» We will show that for each step t, we have
» cost (1) + D(t) - P(1-1) < k costyp(1)

= |f OPT has a hit, then
» cost (1) = costyp(t) = AD =0

= |f OPT has a miss, then
» cost,,(1)=0

» costyp(t) =1

» AD<k
= Because OPT may evict something in LRU

COT 6936 1/23/14

LRU Analysis (Cont’d): LRU serves

=» We will show that for each step t, we have
» cost (1) + P(1) - P(t-1) < k costyp(1)
= |f LRU has a hit, then
» cost . (f) = costy(1) =0; AD <0
= |f LRU has a miss, then
» cost (1) =1; costy(t) =0
» There exists at least one item x in LRU — OPT

» |f x is evicted, then A® < -w(x) < -1
= [f not, its rank is reduced by 2 1. Thus A® < -1

COT 6936 1/23/14

LRU Analysis

» Thus for each step t, we have
» cost (1) + P(1) - P(t-1) < k costyp(1)
= Adding over all steps t, we get
» Jcost (1) + I(P(1) - D(1-1)) < k Icostyp(t)
» Ycost (1) + D(m) - P(0) < k Lcostp(t)
=» But ®(0) =0, and
» d(m)20
» Thus, cost,(o) < k costyp(0)

COT 6936 1/23/14

What to read nexi?

=» Heaps and Priority Queues
» Heap Sort

1111111

Binary Heaps

=» Heaps are binary trees with heap property

» Heaps are best implemented as complete
binary trees using arrays

() 8 I”()‘I()Ilq I8

9
1 2 3 4 5 6 7 8 9 10

CAP 5510 / CGS 5166 | 3 ’)

Why Heaps?

= To implement Priority Queues
= Two operations

» |nsert

= DelefeMin
Insert Oflog n)
FindMin O(1)
ExtractMin O(log n)

BuildHeap O(n)

CAP 5510 / CGS 5166 10/1/19

Need more operations

» Delete(H,x)
= Delete node x

» http://www.mathcs.emory.edu/~cheung/Courses/171/
Syllabus/9?-BinTree/heap-delete.himl O(log n)

DecreaseKey(H,x, k)

» Decrease the value of node x in heap H to k

» Delete followed by reinsert with new key O(log n)
= Union(H1, H2)

» Merge two heaps and return one heap Why these

®» Create new heap with allitems O(n) operations?

CAP 5510 / CGS 5166

Unacceptable!

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/9-BinTree/heap-delete.html
http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/9-BinTree/heap-delete.html

Binomial Heaps

» A collection of

binomial trees
» Binomial Tree ; . S ¢

» B, = single node o 6 6 o o 2° .

» B, ={wo binomial frees
B, ., linked together with P
one root made parent of _ v NS
the other root

CAP 5510 / CGS 5166 n
|

Properties of Binomial Trees

= Binomial free B,
» Has 2k nodes
Height is k
» Root has highest degree = k

= Children of root are roots of binomial tfrees B,
B, ..., B

P 5510/ CGS 5166

10/1/19

(Consolidated) Binomial Heap

= A binomial heap is a set of binomial trees where
» Each iree satisfies the heap property
=» Only one iree in the set has a given rank

= |f the binomial heap has n nodes, what binomial
trees does it have?

= Similar to the bit pattern of n

CAP 5510 / CGS 5166 10/1/19

Binomial Heaps

Od r0 Order1 Order

:

= [|f the binomial heap has n nodes, what
binomial trees does it have?

= Similar to the bit pattern of n

O

(5) 12)
)) eI W@
09 63 @Y @3

63

10/1/19

Binomial Heap Operations

» |nsert: Merge binomial heaps where one heap is a
singleton node

» FindMin: Look through all roots of the binomial
frees

» DeleteMin: Decompose a tree, delete the node
and merge them back

Delete: Easy nhow
DecreaseKey: Easy now

CAP 5510 / CGS 5166 10/1/19

Binomial Heap merge

a) ne) : " ¢ "

(b ead H] —mf] Dy—an{ MPJ—"(!?’—-: ’ . = ‘ . (@ head M) :1‘-) N7) ,(:) P 8)
; W o @ B¢ .5 | w ® @ q;@ “Bie
: | ORINDRMIAL HEAP-ME RO @./%.@ g : e @d (@2’29 @3 %9 (ﬂ' 0"'

| y | ¥ €

(C'NCWI*’ —’LH7}—’(’(“5 é\’ (@ bead M "'1;: 5‘ 6
| & & & @“@f & - B 6 e0e OB

i 40 mfé. a(Qp \j 28 33 25 = @ i ‘3_9 i

E Casel @ @ Q | Casa1l {4 .gg

€9

CAP 5510 / CGS 5166

10/1/19

Operations and Complexities

LinkedList Blnary Heap Binomial Heap Fibonacci Heap

MakeHeap
Insert 1 Log n Logn 1
findMin N | Log n |
deleteMin N Log n Logn Log n
decreaseKey | Log n Log n 1
Delete N Log n Logn Log n

Union /Merge 1 N Log n 1

CAP 5510 / CGS 5166 10/1/19

