COT 6405: Analysis of Algorithms Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html

2 Heap Operations & Complexities

Operation	LinkedList	Binary Heap	Binomial Heap	Fibonacci Heap
MakeHeap	1	1	1	1
Insert	1	Log n	Log n	1
findMin	n	1	Log n	1
deleteMin	n	Log n	Log n	Log n
decreaseKey	1	Log n	Log n	1
Delete	n	Log n	Log n	Log n
Union /Merge	1	n	Log n	1

³ Static Sets

 $u_{\rm S}$

Search: Is x in S?

- Implement set as a List
 - Array
 - Linked List
 - Bit Maps

 $rep[S_i]$

 u_1

 u_2

 S_i :

Dynamic Set operations

Need to maintain a collection of dynamic Sets

- SEARCH: Find-Set(u)
- INSERT: Union(u,v)
- Make-Set(u)
- Implementations
 - Lists, BitMaps, ...

⁵ Connected Components

Given a graph, compute all connected components

DFS or BFS

O(m+n) time

Connected Components w/ Sets

]	Edge processed	Collection of disjoint sets									
	initial sets	$\{a\}$	$\{b\}$	$\{c\}$	$\{d\}$	$\{e\}$	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
	(<i>b</i> , <i>d</i>)	$\{a\}$	$\{b,d\}$	$\{c\}$		$\{e\}$	$\{f\}$	$\{g\}$	$\{h\}$	$\{i\}$	$\{j\}$
	(e,g)	$\{a\}$	$\{b,d\}$	$\{c\}$		$_{\{e,g\}}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$
	(<i>a</i> , <i>c</i>)	$\{a,c\}$	$\{b,d\}$			${e,g}$	{ <i>f</i> }		$\{h\}$	$\{i\}$	$\{j\}$
	(h,i)	$\{a,c\}$	$\{b,d\}$			${e,g}$	{ <i>f</i> }		$\{h,i\}$		$\{j\}$
	(<i>a</i> , <i>b</i>)	$\{a,b,c,d\}$				${e,g}$	$\{f\}$		$\{h,i\}$		$\{j\}$
166	(e, f)	$\{a,b,c,d\}$				$_{\{e,f,g\}}$			$\{h,i\}$		$\{j\}$
	(<i>b</i> , <i>c</i>)	$\{a,b,c,d\}$				$\{e, f, g\}$			$\{h,i\}$		$\{j\}$

10/7/19

Connected Components w/ Sets

CONNECTED-COMPONENTS(G)

- for each vertex $\in G.V$
 - MAKE-SET()
- 3 for each edge $(u, \cdot) \in G.E$
 - **if** FIND-SET $(u) \neq$ FIND-SET()

UNION(u,)

SAME-COMPONENT(u,)

- 1 **if** FIND-SET(u) == FIND-SET()
- 2 return TRUE
- 3 else return FALSE

Dynamic Set operations

Need to maintain a collection of dynamic Sets

- SEARCH: Find-Set(u)
- INSERT: Union(u,v)
- Make-Set(u)
- Implementations
 - Lists, BitMaps, ...

Enough to deal with Disjoint Sets

Implementation Challenges

- Array Implementations
 - Series of unions become very expensive
 O(n²)
- Linked List Implementations
 - Series of unions become very expensive O(n²)
- Bit Implementations
 - Can be O(n²) bit operations

¹⁰ Union Operation

Forest of Trees Implementation

Union

g

FindSet is O(h) time.

Union is O(1) + 2h time

Union is O(1) time.

e

b

 \bullet

How do we do FindSet?

11

CAP 5510 / CGS 5166

b

e

g

A sequence of disjoint-set operations. Superscripts denote rank.

Forest of trees Implementation

Another example

After makeset(A), makeset(B),..., makeset(G):

 E^1

B

F1

(C°

CO

G

10/7/19

G

(G⁰)

 (G^0)

After union(A,D), union(B,E), union(C,F):

A⁰

(A0

A0

Bo

After union(C,G), union(E,A):

After union(B,G):

Trees in forest need not be binary trees

12

Even better Union operations

Problem with FindSet

13

- Height determines time complexity
- Height determined by order of operations
- Always attach smaller tree to and larger tree
 - Why is this better?
 - Guarantees height = O(log n)
 - FindSet is O(log n) time.
 Union is O(1) time.
 Union is O(log n) time

10/7/19

Example of Path Compression

CAP 5510 / CGS 5166

16

UnionFind Data Structure

MAKE-SET(x) 1 x.p = x2 x.rank = 0FIND-SET(x) 1 **if** $x \neq x.p$ 2 x.p = FIND-SET(x.p)3 **return** x.p

UNION(x, y)1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

5

$$y.p = x$$

else
$$x \cdot p = y$$

if
$$x.rank == y.rank$$

y.rank = y.rank + 1

17 🔪 **Union-FInd w/ Path Compression**

Given m operations on n elements, Time Complexity = $O(m \alpha(n))$ For integers k 0 and j 1, we define the function A_k . j/ as $\begin{array}{c|c} A_{k}, j/D \end{array} \begin{array}{c} j C 1 & \text{if } k D 0; \\ A_{k}, j^{C 1}, j/ & \text{if } k & 1; \end{array}$

$$\alpha(n) = \min\left\{k : A_k(1) \quad n\right\}$$

()2 3 7 2 3 2047 1080 4 5 . . .

n

 $A_n(1)$

n	α (n)				
2	0				
3	1				
7	2				
2047	3				
1080	4				

More about Ackermann function

 $\begin{aligned} A_1(j) &= 2j+1 \\ A_2(j) &= 2^{j+1}(j+1) \end{aligned}$

CAP 5510 / CGS 5166