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Relax Step
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!3 All Pairs Shortest Path Algorithm

! Invoke Dijkstra’s SSSP algorithm n times. 
! Or use dynamic programming. How?
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First Variant

! Let D[i,j,m] = length of the shortest path from I 
to j that uses at most m edges 

! D[i,j,0] = ?; D[i,j,1] = ? 
! Recurrence Relation
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Second Variant

! C[i,j,k] = length of shortest path from i to j that 
only uses vertices from {1, 2, …, k}
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Figure 14.38 
Worst-case running times of various graph algorithms

Data Structures & Problem Solving using JAVA/2E       Mark Allen Weiss      © 2002  Addison Wesley
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All Pairs Shortest Path 



Main loops of Floyd-Warshall’s algorithm

November 21, 2005Copyright ©2001-5 by Erik D. Demaine and Charles E. LeisersonL19.17

Pseudocode for Floyd-
Warshall

fork←1tondo fori←1tondo forj←1tondo ifcij > cik + ckj
thencij ←cik + ckj relaxation

Notes:•Okay to omit superscripts, since extra relaxations 
can’t hurt.•Runs in Θ(n 3)time.

•Simple to code.
•Efficient in practice.



Time Complexity

!  Time Complexity = O(n3) 
! Improvements are possible with faster matrix 

multiplication algorithm. 
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Connectivity & Biconnectivity
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Connectivity & Biconnectivity: Undirected Case

! Graph is connected if there 
exists a path between every 
pair of vertices. 

! A tree is minimally 
connected 

! Removing a edge/vertex 
from a minimally connected 
graph makes it 
disconnected.

! Graph is biconnected if there exists 
2 or more disjoint paths between 
every pair of vertices. 

! A cycle is minimally biconnected 
! You need to remove at least 2 

vertices/edges to disconnect a 
minimally biconnected graph. 

! Every node lies on a cycle 

6/26/18
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Connected & Biconnected Components

! Subgraph G’(V’,E’) is a 
connected component of 
G(V,E) if V’ is a maximal 
subset of V that induces a 
connected subgraph.  

! If a graph is not connected, 
it can be decomposed into 
connected components.

! Subgraph G’(V’,E’) is a 
biconnected component of 
G(V,E) if V’ is a maximal 
subset of V that induces a 
biconnected subgraph. 

! If a graph is not 
biconnected, it can be 
decomposed into 
biconnected components.

6/26/18
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What does DFS do for us?
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Biconnectivity 4/10/2014

!15 Testing for Biconnectivity

! An articulation point is a vertex whose removal 
disconnects graph. 

! A bridge is an edge whose removal disconnects graph.  
! Claim: If a graph is not biconnected, it must have an 

articulation point. Proof? ”If and only if”? 
! How do we look for articulation points (and bridges)? 

!  Use DFS



Biconnectivity Principles

! If root of DFS tree has at least 2 children, it’s an articulation point 
!  Easy to check! 

! Non-root vertex u is an articulation point of G if and only if u has a 
child v such that there is no back edge from v or any descendant 
of v to a proper ancestor of u 

! Compute Low[x] = lowest numbered vertex reachable from some 
descendant of x (default is d[x]) 

! Vertex u is an articulation point if Low[s] >= d[u] for child s of u
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BCC
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!17

BCC(G, u) // Compute the biconnected components of G      
// starting from vertex u 

1. Color[u] ← GRAY 
2. Low[u] ← d[u] ← Time ← Time + 1 
3. Put u on stack S 
4. for each v ∈ Adj[u] do 
5.     if (v ≠ π[u]) and (color[v] ≠ BLACK) then  
6.          if (TopOfStack(S) ≠ u) then put u on stack S 
7.          Put edge (u,v) on stack S 
8.       if (color[v] = WHITE) then  
9.               π[v] ← u 
10.               BCC(G, v) 
11.               if (Low[v] >= d[u]) then // u is an articul. pt. 
12.                     // Output next biconnected component 
13.                     Pop S until u is reached 
14.                     Push u back on S 
15.               Low[u] = min { Low[u], Low[v] } 
16.         else Low[u] = min { Low[u], d[v] } // back edge 
17. color[u] ← BLACK 

DFS-VISIT(u) 
1. VisitVertex(u) 
2. Color[u] ← GRAY 
3. Time ← Time + 1 
4. d[u] ← Time 
5. for each v ∈ Adj[u] do 
6.     VisitEdge(u,v) 
7.     if (v ≠ π[u]) then  
8.       if (color[v] = WHITE) then  
9.               π[v] ← u 
10.               DFS-VISIT(v) 
11.color[u] ← BLACK 
12.F[u] ← Time ← Time + 1



Correctness and Complexity
! Theorem: A graph is biconnected if and only if it 

has no articulation points 
! BCC finds all articulation points 

! If Low[child(u)] >= u, then u is an articulation point 
! Correctness follows from theoretical principles 
! Time and Space complexity = O(n+m) Why?



How to detect bridges

! An edge e of G is a bridge if and only if it does not lie 
on any simple cycle of G 
!  Use DFS, where every edge is a tree edge or back edge 
!  If edge e is a back edge?  

!It cannot be a bridge! Why? 
!  If edge e is a tree edge?  

!Let e = (u,v) such that u is the parent of v 
!Edge e is a bridge if Low[v] = d[v]



Correctness and Complexity

! Correctness follows from the theoretical 
principles 

! Time and Space complexity to detect all 
bridges in the graph  
!  O(n+m)  Why?


