COT 6405: Analysis of Algorithms

Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html

1

CAP 5510 / CGS 5166 11/20/19

2

Relax Step

CAP 5510 / CGS 5166

All Pairs Shortest Path Algorithm

- Invoke Dijkstra's SSSP algorithm n times.
- Or use dynamic programming. How?

COT 5407

First Variant

- Let D[i,j,m] = length of the shortest path from I to j that uses at most m edges $l_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j. \end{cases}$
- D[i,j,0] = ?; D[i,j,1] = ?
- Recurrence Relation

$$\begin{split} l_{ij}^{(m)} &= \min \big\} \, l_{ij}^{(m-1)}, \min_{1=k=n} \big\{ l_{ik}^{(m-1)} + w_{kj} \\ &= \min_{1=k=n} \big\{ l_{ik}^{(m-1)} + w_{kj} \big\} \, . \end{split}$$

Second Variant

C[i,j,k] = length of shortest path from i to j that only uses vertices from {1, 2, ..., k}

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min \ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} & \text{if } k = 1. \end{cases}$$

Type of Graph Problem	RUNNING TIME	COMMENTS
Unweighted	O(E)	Breadth-first search
Weighted, no negative edges	$O(E \log V)$	Dijkstra's algorithm
Weighted, negative edges	$O(E \cdot V)$	Bellman-Ford algorithm
Weighted, acyclic	O(E)	Uses topological sort

COT 5407 2/23/17

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 \\ \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} NIL & 3 & 4 & 5 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$

Figure 25.4 The sequence of matrices $D^{(k)}$ and $\Pi^{(k)}$ computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.

All Pairs Shortest Path

```
FLOYD-WARSHALL(W)
  n = W.rows
D^{(0)} = W
    for k = 1 to n
        let D^{(k)} = d_{ij}^{(k)} be a new n matrix
       for i = 1 to n
              for j = 1 to n
                    d_{ij}^{(k)} = \min d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)}
```

Main loops of Floyd-Warshall's algorithm

Time Complexity

- Time Complexity = O(n³)
- Improvements are possible with faster matrix multiplication algorithm.

Connectivity & Biconnectivity

Giri Narasimhan

Connectivity & Biconnectivity: Undirected Case

- Graph is connected if there exists a path between every pair of vertices.
- A tree is minimally connected
- Removing a edge/vertex from a minimally connected graph makes it disconnected.

- Graph is biconnected if there exists 2 or more disjoint paths between every pair of vertices.
- A cycle is minimally biconnected
- You need to remove at least 2 vertices/edges to disconnect a minimally biconnected graph.
- Every node lies on a cycle

Giri Narasimhan 6/26/18

Connected & Biconnected Components

- Subgraph G'(V',E') is a connected component of G(V,E) if V' is a maximal subset of V that induces a connected subgraph.
- If a graph is not connected, it can be decomposed into connected components.
- Subgraph G'(V',E') is a biconnected component of G(V,E) if V' is a maximal subset of V that induces a biconnected subgraph.
- If a graph is not biconnected, it can be decomposed into biconnected components.

Giri Narasimhan 6/26/18

What does DFS do for us?

15 Testing for Biconnectivity

- An articulation point is a vertex whose removal disconnects graph.
- A bridge is an edge whose removal disconnects graph.
- Claim: If a graph is not biconnected, it must have an articulation point. Proof? "If and only if"?
- How do we look for articulation points (and bridges)?
 - **Use DFS**

Biconnectivity Principles

- If root of DFS tree has at least 2 children, it's an articulation point
 - Easy to check!
- Non-root vertex u is an articulation point of G if and only if u has a child v such that there is no back edge from v or any descendant of v to a proper ancestor of u
- Compute Low[x] = lowest numbered vertex reachable from some descendant of x (default is d[x])
- Vertex u is an articulation point if Low[s] >= d[u] for child s of u

17

BCC

DFS-VISIT(U)

- VisitVertex(u)
- 2. Color[u] ← GRAY
- 3. Time ← Time + 1
- 4. d[u] ← Time
- 5. for each $v \in Adj[u]$ do
- 6. VisitEdge(u,v)
- 7. if $(\lor \neq \pi[\cup])$ then
- 8. if (color[v] = WHITE) then
- 9. $\pi[V] \leftarrow U$
- 10. DFS-VISIT(v)
- 11.color[u] ← BLACK
- 12.F[U] ← Time ← Time + 1

```
BCC(G, u) // Compute the biconnected components of G // starting from vertex u
```

- 1. $Color[u] \leftarrow GRAY$
- 2. Low[u] \leftarrow d[u] \leftarrow Time \leftarrow Time + 1
- 3. Put u on stack S
- 4. for each $v \in Adj[u]$ do
- 5. if $(v \neq \pi[u])$ and $(color[v] \neq BLACK)$ then
- 6. if $(TopOfStack(S) \neq u)$ then put u on stack S
- 7. Put edge (u,v) on stack S
- 8. if (color[v] = WHITE) then
- $9. \pi[v] \leftarrow u$
- 10. BCC(G, v)
- 11. if (Low[v] >= d[u]) then // u is an articul. pt.
- 12. // Output next biconnected component
- 13. Pop S until u is reached
- 14. Push u back on S
- 15. $Low[u] = min \{ Low[u], Low[v] \}$
- 16. else Low[u] = min { Low[u], d[v] } // back edge

Correctness and Complexity

- Theorem: A graph is biconnected if and only if it has no articulation points
- BCC finds all articulation points
 - If Low[child(u)] >= u, then u is an articulation point
- Correctness follows from theoretical principles
- Time and Space complexity = O(n+m) Why?

How to detect bridges

- An edge e of G is a bridge if and only if it does not lie on any simple cycle of G
 - Use DFS, where every edge is a tree edge or back edge
 - If edge e is a back edge?
 - It cannot be a bridge! Why?
 - If edge e is a tree edge?
 - Let e = (u,v) such that u is the parent of v
 - Edge e is a bridge if Low[v] = d[v]

Correctness and Complexity

- Correctness follows from the theoretical principles
- Time and Space complexity to detect all bridges in the graph
 - O(n+m) Why?