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All Pairs Shortest Path Algorithm

» |nvoke Dijkstra’s SSSP algorithm n times.
= Or use dynamic programming. How?
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First Variant

» Let DJ[i,j,m] = length of the shortest path from |
to j that uses at most m edges e
jO) _ 0 ifi =7,

D[i,j0] = ?; D[i,j1]1="? i T oo ifi# .
®» Recurrence Relation

(m) . Lm 1) . fplm 1) -
l;;7 = minf§l; ", min e T wy

- n
= min {7V + wy,
I & n
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Second Variant

» CJi,j, k] = length of shortest path from i to j that
only uses vertices from {1, 2, ..., k}

w;, ifk =0,

(k)

d,, = | | |

‘) , (k 1) (k 1) (k 1) o1
min d;; C.d, T +dy, ifk 1.



Figure 14.38
Worst-case running times of various graph algorithms

TYPE OF GRAPH PROBLEM RUNNING TIME COMMENTS
Unweighted O(E|) Breadth-first search
Waightec, no negative edges O(\E|log|V]) Dijkstra's algorithm
Waightad, negative edges O(E| - V) Balman-Ford algorithm
Waightac, acydic 2(1E]) Uzses topological sort
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Figure 254 The sequence of matrices D% and M®) computed by the Floyd-Wacshall dlgorithm ze

for the graph in Figure 25.1.




All Pairs Shortest Path

FLOYD-WARSHALL(W)
l

n = W.rows
DO — W

fork = 1 ton

let DO = 4 beanewn n matrix
fori = lton
for j = 1ton

k . k1) gk kol
d,-f,-’ = min d; \.d} )+d£,. )



Main loops of Floyd-Warshall’s algorithm
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Time Complexity

» Time Complexity = O(n3)

» Improvements are possible with faster matrix
multiplication algorithm.




Connectivity & Biconnectivity

Giri Narasimhan




» Graph is connected if there
exists a path between every
pair of vertices.

A ifee is minimally
nnected

emoving a edge/vertex
from a minimally connected
graph makes it
disconnected.

onnectivity & Biconnectivity: Undirected Case

Graph is biconnected if there exists
2 or more disjoint paths between
every pair of vertices.

A cycle is minimally biconnected

You need to remove at least 2
vertices/edges to disconnect a
minimally biconnected graph.

Every node lies on a cycle
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Connected & Biconnected Components

» Subgraph G’(V',E’) is a » Subgraph G'(V',E’) is a
connected component of biconnected component of
G(V,E) if V' is a maximal G(V,E) if V' is a maximal
subset of V that induces a subset of V that induces a
connected subgraph. biconnected subgraph.

= |f a graphis not connected, = If a graph is not
it can be decomposed into biconnected, it can be
connected components. decomposed into

biconnected components.
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What does DFS do for us?




Testing for Biconnectivity

=» An arficulation point is a vertex whose removal
disconnects graph.

» A bridge is an edge whose removal disconnects graph.

im: If a graph is not biconnected, it must have an
rticulation point. Proof? "If and only if”?

ow do we look for articulation points (and bridges)?

|||||||||||||| 4/10/2014



Biconnectivity Principles

= |f root of DFS tree has at least 2 children, it's an articulation point
» Easy to check!

=» Non-root veriex v is an articulation point of G if and only if u has a
v such that there is no back edge from v or any descendant
to a proper ancestor of u

ompute Low|[x] = lowest numbered vertex reachable from some
escendant of x (default is d[x])

ertex v is an articulation point if Low[s] >= d[u] for child s of u




BCC(G, u) // Compute the biconnected components of G
// starting from vertex u

BCC 1. Color[u] < GRAY
/ 2. Low[u] < d[u] < Time <— Time + 1
DFS-VISIT(u) 3. Put uonstack S.
. 4. for eachv e Adj[u] do
1. VisitVertex(u) . £ 4 (col BLACK) th
2. Color[u] < GRAY . (Y: 'T;[U]()):‘lg‘r (C: cswm th )T o stack &
2 Time < Time + 1 7. ;) ,(r odp ack( )T;é uk)S en put uon stac
4. d[u] < Time 8. .fu( el o) (u,—vx':;TaEc) th
5. for each v € Adj[u] do ' It (colorfv] = en
. 0. n[v] < u
6.  VisitEdge(u,v)
7. if (v =mn[u]) then 10. BCc(e, v)
8. if (color[v] = WHITE] then 11, if (Low[v]>= d[u]) then // uis an articul. pt.
' 12. // Output next biconnected component
& vl < u 13 Pop S until u is reached
10. DFS-VISIT(v) ‘ P
11.color[u] < BLACK 14. Push u back on S
' 15. Low([u] = min { Low[u], Low[v] }

<« i < . +
]2°F[U\]\ e = Wie < | , else Low[u] = min { Low[u], d[v]} // back edge



Correctness and Complexity

» Theorem: A graph is biconnected if and only if it
has no articulation points

BCC finds all articulation points
» |f Low[child(u)] >= v, then v is an articulation point

» Correctness follows from theoretical principles
» Time and Space complexity = O(n+m) Why?




How to detect bridges

» An edge e of G is a bridge if and only if it does not lie
on any simple cycle of G

» Use DFS, where every edge is a tree edge or back edge

» |f edge eis a back edge?
= |t cannot be a bridge! Why?

» |f edge eis airee edge?
=Let e = (u,v) such that v is the parent of v

= Edge e is a bridge if Low|[v] = d[v]




Correctness and Complexity

» Correctness follows from the theoretical
principles
Time and Space complexity to detect all
bridges in the graph
» O(n+tm) Why?




