
CAP 5510 / CGS 5166

COT 6405: Analysis of
Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html
11/20/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

CAP 5510 / CGS 5166

Relax Step

11/20/19

!2

COT 5407 2/23/17

!3 All Pairs Shortest Path Algorithm

! Invoke Dijkstra’s SSSP algorithm n times.
! Or use dynamic programming. How?

CAP 5510 / CGS 5166

First Variant

! Let D[i,j,m] = length of the shortest path from I
to j that uses at most m edges

! D[i,j,0] = ?; D[i,j,1] = ?
! Recurrence Relation

11/20/19

!4

CAP 5510 / CGS 5166

Second Variant

! C[i,j,k] = length of shortest path from i to j that
only uses vertices from {1, 2, …, k}

11/20/19

!5

COT 5407 2/23/17

!6

Figure 14.38
Worst-case running times of various graph algorithms

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

COT 5407 2/23/17

!7

All Pairs Shortest Path

Main loops of Floyd-Warshall’s algorithm

November 21, 2005Copyright ©2001-5 by Erik D. Demaine and Charles E. LeisersonL19.17

Pseudocode for Floyd-
Warshall

fork←1tondo fori←1tondo forj←1tondo ifcij > cik + ckj
thencij ←cik + ckj relaxation

Notes:•Okay to omit superscripts, since extra relaxations
can’t hurt.•Runs in Θ(n 3)time.

•Simple to code.
•Efficient in practice.

Time Complexity

! Time Complexity = O(n3)
! Improvements are possible with faster matrix

multiplication algorithm.

Giri Narasimhan

Connectivity & Biconnectivity

6/26/18

!11

7

5

6

81

324

7

5

6

81

324

Giri Narasimhan

Connectivity & Biconnectivity: Undirected Case

! Graph is connected if there
exists a path between every
pair of vertices.

! A tree is minimally
connected

! Removing a edge/vertex
from a minimally connected
graph makes it
disconnected.

! Graph is biconnected if there exists
2 or more disjoint paths between
every pair of vertices.

! A cycle is minimally biconnected
! You need to remove at least 2

vertices/edges to disconnect a
minimally biconnected graph.

! Every node lies on a cycle

6/26/18

!12

Giri Narasimhan

Connected & Biconnected Components

! Subgraph G’(V’,E’) is a
connected component of
G(V,E) if V’ is a maximal
subset of V that induces a
connected subgraph.

! If a graph is not connected,
it can be decomposed into
connected components.

! Subgraph G’(V’,E’) is a
biconnected component of
G(V,E) if V’ is a maximal
subset of V that induces a
biconnected subgraph.

! If a graph is not
biconnected, it can be
decomposed into
biconnected components.

6/26/18

!13

CAP 5510 / CGS 5166

What does DFS do for us?

11/20/19

!14

Biconnectivity 4/10/2014

!15 Testing for Biconnectivity

! An articulation point is a vertex whose removal
disconnects graph.

! A bridge is an edge whose removal disconnects graph.
! Claim: If a graph is not biconnected, it must have an

articulation point. Proof? ”If and only if”?
! How do we look for articulation points (and bridges)?

! Use DFS

Biconnectivity Principles

! If root of DFS tree has at least 2 children, it’s an articulation point
! Easy to check!

! Non-root vertex u is an articulation point of G if and only if u has a
child v such that there is no back edge from v or any descendant
of v to a proper ancestor of u

! Compute Low[x] = lowest numbered vertex reachable from some
descendant of x (default is d[x])

! Vertex u is an articulation point if Low[s] >= d[u] for child s of u

Giri Narasimhan

BCC

6/26/18

!17

BCC(G, u) // Compute the biconnected components of G
// starting from vertex u

1. Color[u] ← GRAY
2. Low[u] ← d[u] ← Time ← Time + 1
3. Put u on stack S
4. for each v ∈ Adj[u] do
5. if (v ≠ π[u]) and (color[v] ≠ BLACK) then
6. if (TopOfStack(S) ≠ u) then put u on stack S
7. Put edge (u,v) on stack S
8. if (color[v] = WHITE) then
9. π[v] ← u
10. BCC(G, v)
11. if (Low[v] >= d[u]) then // u is an articul. pt.
12. // Output next biconnected component
13. Pop S until u is reached
14. Push u back on S
15. Low[u] = min { Low[u], Low[v] }
16. else Low[u] = min { Low[u], d[v] } // back edge
17. color[u] ← BLACK

DFS-VISIT(u)
1. VisitVertex(u)
2. Color[u] ← GRAY
3. Time ← Time + 1
4. d[u] ← Time
5. for each v ∈ Adj[u] do
6. VisitEdge(u,v)
7. if (v ≠ π[u]) then
8. if (color[v] = WHITE) then
9. π[v] ← u
10. DFS-VISIT(v)
11.color[u] ← BLACK
12.F[u] ← Time ← Time + 1

Correctness and Complexity
! Theorem: A graph is biconnected if and only if it

has no articulation points
! BCC finds all articulation points

! If Low[child(u)] >= u, then u is an articulation point
! Correctness follows from theoretical principles
! Time and Space complexity = O(n+m) Why?

How to detect bridges

! An edge e of G is a bridge if and only if it does not lie
on any simple cycle of G
! Use DFS, where every edge is a tree edge or back edge
! If edge e is a back edge?

!It cannot be a bridge! Why?
! If edge e is a tree edge?

!Let e = (u,v) such that u is the parent of v
!Edge e is a bridge if Low[v] = d[v]

Correctness and Complexity

! Correctness follows from the theoretical
principles

! Time and Space complexity to detect all
bridges in the graph
! O(n+m) Why?

