COT 6405: Analysis of Algorithms
Giri NARASIMHAN
NP-Completeness
Polynomial-time computations

- An algorithm has time complexity $O(T(n))$ if it runs in time at most $cT(n)$ for every input of length n.
- An algorithm is a polynomial-time algorithm if its time complexity is $O(p(n))$, where $p(n)$ is polynomial in n.
Polynomials

- If $f(n) =$ polynomial function in n, then $f(n) = O(n^c)$, for some fixed constant c
- If $f(n) =$ exponential (super-poly) function in n, then $f(n) = \omega(n^c)$, for any constant c
- Composition of polynomial functions are also polynomial, i.e., $f(g(n)) =$ polynomial if $f()$ and $g()$ are polynomial
- If an algorithm calls another polynomial-time subroutine a polynomial number of times, then the time complexity is polynomial.
The class \(\mathcal{P} \)

- A problem is in \(\mathcal{P} \) if there exists a polynomial-time algorithm that solves the problem.

Examples of \(\mathcal{P} \)

- **DFS**: Linear-time algorithm exists
- **Sorting**: \(O(n \log n) \)-time algorithm exists
- **Bubble Sort**: Quadratic-time algorithm \(O(n^2) \)
- **APSP**: Cubic-time algorithm \(O(n^3) \)

\(\mathcal{P} \) is therefore a class of problems (not algorithms)!
The class NP

- A problem is in NP if there exists a non-deterministic polynomial-time algorithm that solves the problem.
- A problem is in NP if there exists a (deterministic) polynomial-time algorithm that verifies a solution to the problem.
- All problems that are in P are also in NP
- All problems that are in NP may not be in P
TSP: Traveling Salesperson Problem

- **Input:**
 - Weighted graph, G
 - Length bound, B

- **Output:**
 - Is there a traveling salesperson tour in G of length at most B?
 - Is TSP in UP?
 - **YES.** Easy to verify a given solution.
 - Is TSP in P?
 - **OPEN!**
 - One of the greatest unsolved problems of this century!
 - Same as asking: Is $\text{P} = \text{NP}$?
So, what is NP-Complete?

- NP-Complete problems are the “hardest” problems in NP.
- We need to formalize the notion of “hardest”.
Terminology

Problem:

- An abstract problem is a function (relation) from a set I of instances of the problem to a set S of solutions.

\[p: I \rightarrow S \]

- An instance of a problem p is obtained by assigning values to the parameters of the abstract problem.

- Thus, describing set of all instances (i.e., possible inputs) and set of corresponding outputs defines a problem.

Algorithm:

- An algorithm that solves problem p must give correct solutions to all instances of the problem.

Polynomial-time algorithm:
Terminology (Cont’d)

- **Input Length:**
 - length of an encoding of an instance of the problem.
 - Time and space complexities are written in terms of it.

- **Worst-case time/space complexity of an algorithm**
 - Is the maximum time/space required by the algorithm on any input of length \(n \).

- **Worst-case time/space complexity of a problem**
 - **UPPER BOUND:** worst-case time complexity of best existing algorithm that solves the problem.
 - **LOWER BOUND:** (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
 - **LOWER BOUND \(\leq \) UPPER BOUND**

- **Complexity Class \(\mathcal{P} \):**
 - Set of all problems \(p \) for which polynomial-time algorithms exist.
Terminology (Cont’d)

- **Decision Problems:**
 - These are problems for which the solution set is \{yes, no\}.
 - Example: Does a given graph have an odd cycle?
 - Example: Does a given weighted graph have a TSP tour of length at most B?

- **Complement of a decision problem:**
 - These are problems for which the solution is “complemented”.
 - Example: Does a given graph **NOT** have an odd cycle?
 - Example: Is every TSP tour of a given weighted graph of length greater than B?

- **Optimization Problems:**
 - These are problems where one is maximizing (or minimizing) some objective function.
 - Example: Given a weighted graph, find a MST.
 - Example: Given a weighted graph, find an optimal TSP tour.

- **Verification Algorithms:**
 - Given a problem instance \(i\) and a certificate \(s\), is \(s\) a solution for instance \(i\)?
Terminology (Cont’d)

- **Complexity Class \(\mathcal{P} \):**
 - Set of all problems \(p \) for which polynomial-time algorithms exist.

- **Complexity Class \(\mathcal{NP} \):**
 - Set of all problems \(p \) for which polynomial-time verification algorithms exist.

- **Complexity Class \(\text{co-}\mathcal{NP} \):**
 - Set of all problems \(p \) for which polynomial-time verification algorithms exist for their complements, i.e., their complements are in \(\mathcal{NP} \).
Terminology (Cont’d)

- **Reductions:** \(p_1 \rightarrow p_2 \)
 - A problem \(p_1 \) is reducible to \(p_2 \), if there exists an algorithm \(R \) that takes an instance \(i_1 \) of \(p_1 \) and outputs an instance \(i_2 \) of \(p_2 \), with the constraint that the solution for \(i_1 \) is YES if and only if the solution for \(i_2 \) is YES.
 - Thus, \(R \) converts YES (NO) instances of \(p_1 \) to YES (NO) instances of \(p_2 \).

- **Polynomial-time reductions:** \(p_1 \rightleftharpoons p_2 \)
 - \(R \):
 - If \(p_1 \rightleftharpoons p_2 \), then
 - If \(p_2 \) is easy, then so is \(p_1 \). \(p_2 \in \mathcal{P} \Rightarrow p_1 \in \mathcal{P} \)
 - If \(p_1 \) is hard, then so is \(p_2 \). \(p_1 \not\in \mathcal{P} \Rightarrow p_2 \not\in \mathcal{P} \)
What are \textit{NP-Complete} problems?

- These are the hardest problems in \textit{NP}.

- A problem p is \textit{NP-Complete} if
 - there is a polynomial-time reduction from every problem in \textit{NP} to p.
 - $p \in \text{NP}$

How to prove that a problem is \textit{NP-Complete}?

- Cook's Theorem: [1972]
 - The \textbf{SAT} problem is \textit{NP-Complete}.

\textbf{Steve Cook, Richard Karp, Leonid Levin}
NP-Complete vs NP-Hard

- **A problem** p **is NP-Complete if**
 - there is a polynomial-time reduction from every problem in NP to p.
 - $p \in \text{NP}$

- **A problem** p **is NP-Hard if**
 - there is a polynomial-time reduction from every problem in NP to p.
The SAT Problem: an example

- Consider the boolean expression:
 \[C = (a \lor \neg b \lor c) \land (\neg a \lor d \lor \neg e) \land (a \lor \neg d \lor \neg c) \]

- Is \(C \) satisfiable?
- Does there exist a True/False assignments to the boolean variables \(a, b, c, d, e \), such that \(C \) is True?
- Set \(a = \text{True} \) and \(d = \text{True} \). The others can be set arbitrarily, and \(C \) will be true.
- If \(C \) has 40,000 variables and 4 million clauses, then it becomes hard to test this.
- If there are \(n \) boolean variables, then there are \(2^n \) different truth value assignments.
- However, a solution can be quickly verified!
The SAT (Satisfiability) Problem

- **Input**: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses.
- **Question**: Is C satisfiable?
 - Let $C = C_1 \land C_2 \land \ldots \land C_m$
 - Where each $C_i =$
 - And each $x_i \in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression C_T for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.

- How to now prove Cook's theorem? Is SAT in NP?
- Can every problem in NP be poly. reduced to it?
The problem classes and their relationships

\[\text{co-NP} \subseteq \text{NP} \subseteq \text{NP-C} \]
More **NP-Complete** problems

3SAT

- **Input:** Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.

- **Question:** Is C satisfiable?

 - Let $C = C_1 \land C_2 \land \ldots \land C_m$
 - Where each $C_i = (y_1 \lor y_2 \lor y_3)$
 - And each $y_j \in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\}$

 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

3SAT is NP-Complete.
More \(\text{\textit{NP}} \text{- Complete} \) problems?

2SAT

- **Input**: Boolean expression \(C \) in Conjunctive normal form (CNF) in \(n \) variables and \(m \) clauses. Each clause has at most three literals.

- **Question**: Is \(C \) satisfiable?

 - Let \(C = C_1 \land C_2 \land \ldots \land C_m \)

 - Where each \(C_i = \)

 - And each \(i \in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\} \)

 We want to know if there exists a truth assignment to all the variables in the boolean expression \(C \) that makes it true.

\(2SAT \text{ is in } \mathcal{P} \)
3SAT is \textit{NP-Complete}

- 3SAT is in \textit{NP}.
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in \textit{NP} can be reduced in polynomial time to 3SAT. Therefore, 3SAT is \textit{NP-Complete}.
- So, we have to design an algorithm such that:
 - Input: an instance C of SAT
 - Output: an instance C’ of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C’ is satisfiable.
3SAT is \textit{NP-Complete}

- Let C be an instance of SAT with clauses C_1, C_2, ..., C_m
- Let C_i be a disjunction of $k > 3$ literals.

 $C_i = y_1 \lor y_2 \lor ... \lor y_k$

- Rewrite C_i as follows:

 $C'_i = (y_1 \lor y_2 \lor z_1) \land$

 $(\neg z_1 \lor y_3 \lor z_2) \land$

 $(\neg z_2 \lor y_4 \lor z_3) \land$

 ...

 $(\neg z_{k-3} \lor y_{k-1} \lor y_k)$

- Claim: C_i is satisfiable if and only if C'_i is satisfiable.
2SAT is in \(\mathcal{P} \)

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework problem!
The CLIQUE Problem

• A **clique** is a completely connected subgraph.

CLIQUE

➤ **Input**: Graph \(G(V,E) \) and integer \(k \)

➤ **Question**: Does \(G \) have a clique of size \(k \)?
CLIQUE is \textit{NP-Complete}

- CLIQUE is in \textit{NP}.
- Reduce 3SAT to CLIQUE in polynomial time.

 \[F = (x_1 \lor \neg x_2 \lor x_3) (\neg x_1 \lor \neg x_3 \lor x_4) (x_2 \lor x_3 \lor \neg x_4) (\neg x_1 \lor \neg x_2 \lor x_3) \]

 F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.
Vertex Cover

A vertex cover is a set of vertices that “covers” all the edges of the graph.

Examples
Vertex Cover (VC)

Input: Graph G, integer k

Question: Does G contain a **vertex cover** of size k?

- VC is in NP.
- Polynomial-time reduction from CLIQUE to VC.
- Thus VC is NP-Complete.

Claim: G' has a clique of size k' if and only if G has a VC of size $k = n - k'$

Hamiltonian Cycle Problem (HCP)

Input: Graph G

Question: Does G contain a **hamiltonian** cycle?

- HCP is in **NP**.
- There exists a polynomial-time reduction from 3SAT to HCP.
- Thus HCP is **NP-Complete**.

Notes/animations by a former student, Yi Ge!