Priority Queue

Operations

- MAXIMUM(S),

- INSERT(S, x)

- EXTRACT-MAX(S)

- INCREASE-KEY(S, x, k)
Implementation

- Use a HEAP.
MAXIMUM:

- Return value stored at root.

INSERT:

- Insert at last leaf and percolate up tree.
EXTRACT-MAX:

- Delete root of heap and call HEAPTIFY.
INCREASE-KEY:

* Change value and percolate up tree.

03/02/04 Lecture 15

Graphs

* Graph G(VE)

-V Vertices or Nodes

- E Edges or Links: pairs of vertices
* D Directed vs. Undirected edges

- Weighted vs Unweighted

* Graphs can be augmented to store extra info (e.g.,
city population, oil flow capacity, etc.)

» Paths and Cycles

» Subgraphs G'(V'E’), where V' is a subset of V and
E'is a subset of E

+ Trees and Spanning trees

03/02/04 Lecture 15 2

123 45
'::i,--.-*'|2|~H5i/l 1[0 100 1
] 5] 3] 4]/ aly o 1.1 1
':;;-:’-.’f'-'-*{ﬂ—}*Hi/l 30 1 0 1 0
el 5] a3l 4ot g
g e EEER e AP Sla 10 1o
(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five
vertices and seven edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix rep-
resentation of G.

-»1 2_.|.,+| 41/]

o = = O Lh
—_—
L

_0 O O =

o T T N S O I

o B e B e B e B = B =2
O O = O O —|M
o O O O o oW

L R e

|~
=
=
ek

—~
=]
oS
—
=
—
—
L]
e

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices
and eight edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.

03/02/04 Lecture 15

Graph Traversal

Visit every vertex and every edge.
Traversal has to be systematic so that no vertex
or edge is missed.

+ Just as tree traversals can be modified to solve
several tree-related problems, graph traversals
can be modified to solve several problems.

03/02/04 Lecture 15

03/02/04

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they arc shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Vertices are timestamped by discovery time/finishing time.

Lecture 15

DFS(6)

1. For each vertex u € V[G] do
2. color[u] « WHITE
3. n[u] « NIL
4. Time <0 DFS-VISIT(u)
5. For each vertex u € V[G] do 1. VisitVertex(u)
6. if color[u]= WHITE then |2 cColor[u] < GRAY
7. DFS-VISIT(u) 3. Time <« Time +1
4. d[u] < Time
5. for each v e Adj[u] do
6. VisitEdge(u,v)
Depth 7. if (v = n[u]) then
F| rst 8. if (color[v] = WHITE) then
9. n[v] < u
Search 10. DFS-VISIT(v)
11. color[u] <~ BLACK
12. F[u] « Time < Time + 1

03/02/04 Lecture 15 6

03/02/04

(a)

(b)

1 2345678 91011121314 1516
6CCOoEDNwWwz s @ 0v)weyd

)

()

Figure 22.5 Properties of depth-first search. (a) The result of a depth-first search of a directed
graph. Vertices are timestamped and edge types are indicated as in Figure 22.4. (b) Intervals for
the discovery time and finishing time of each vertex correspond to the parenthesization shown. Each
rectangle spans the interval given by the discovery and finishing times of the corresponding vertex.
Tree edges are shown. If two intervals overlap, then one is nested within the other, and the vertex
corresponding to the smaller interval is a descendant of the vertex corresponding to the larger. (c) The
graph of part (a) redrawn with all tree and forward edges going down within a depth-first tree and all
back edges going up from a descendant to an ancestor.

03/02/04

(h)

(i) Q

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. Within each vertex u is shown d[u]. The queue @ is shown at the beginning
of each iteration of the while loop of lines 10-18. Vertex distances are shown next to vertices in the
queue,

Lecture 15

Breadth
First
Search

03/02/04

BFS(6G,s)

Vo ONGC Ok WwnN =

For each vertex u eV[G] - {s} do
color[u] <« WHITE
d[u] <« «
n[u] « NIL
Color[u] « GRAY
D[s] <« O
n[s] <« NIL
Q« D
ENQUEVE(Q,s)

10 While Q # ® do

11.

12.
13.
14,
15.
16.
17.
18.
19.
20.

u < DEQUEVE(Q)
VisitVertex(u)
for each v € Adj[u] do
VisitEdge(u,v)
if (color[v] = WHITE) then
color[v] < GRAY
d[v] < d[u]+1
n[v] < u
ENQUEUE(Q,v)
color[u] « BLACK

Figure 14.30A

A topological sort. The conventions are the same as those in Figure 14.21
(continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.30B

A topological sort. The conventions are the same as those in
Figure 14.21.

) O

W & W ® @
(@S 5 6
0 @

W oW W W w W
& @ 7 & @ s

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.31A

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.31B

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.

VIVl vTT _vuLlul v LV L

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Connectivity

* A (simple) undirected graph is connected if there
exists a path between every pair of vertices.

* If agraph is not connected, then G'(V',E’) is a
connected component of the graph G(V,E) if V'isa
maximal subset of vertices from V that induces a
connected subgraph. (What is the meaning of
maximal?)

* The connected components of a graph correspond
to a partition of the set of the vertices. (What is
the meaning of partition?)

* How to compute all the connected components?
- Use DFS or BFS.

03/02/04 Lecture 15 14

Biconnectivity: Generalizing Connectivity

* A tree is a minimally connected graph.

+ Removing a vertex from a connected graph may
make it disconnected.

* A graph is biconnected if removing a single vertex
does not disconnect the graph.

- Alternatively, a graph is biconnected if for every
pair of vertices there exists at least 2 disjoint
paths between them.

* A graph is k-connected if for every pair of
vertices there exists at least k disjoint paths
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.

03/02/04 Lecture 15 15

Biconnected Components

+ If agraph is not biconnected, it can be
decomposed into biconnected components.

» An articulation point is a vertex whose removal
disconnects the graph.

* Claim: If agraph is not biconnected, it must have
an articulation point. Proof?

» A biconnected component of a simple undirected
graph G(V,E) is a maximal set of edges from E that
induces a biconnected subgraph.

03/02/04 Lecture 15 16

03/02/04

Biconnected Components

Figure 22.10 The articulation points, bridges, and biconnected components of a connected, undi-
rected graph for use in Problem 22-2. The articulation points are the heavily shaded vertices, the
bridges are the heavily shaded edges, and the biconnected components are the edges in the shaded
regions, with a bee numbering shown.

Lecture 15

17

Amortized Analysis

In amortized analysis, we are looking for the time
complexity of a seqguence of n operations, instead of
the cost of a single operation.

Cost of a sequence of n operations = n S(n), where
S(n) = worst case cost of each of the n operations

Amortized Cost = T(n)/n, where T(n) = worst case
total cost of the n operations in the sequence.

Amortized cost can be small even when some
operations Iin that sequence are expensive. Often,
the worst case may not occur in_every operation.
The cost of expensive operations may be ‘paid for’ by
charging to other less expensive operations.

03/02/04 Lecture 15 18

Problem 1: Stack Operations

Data Structure: Stack

Operations:
— Push(s,x) : Push object x into stack s.
 Cost: T(push)=O(1).
— Pop(s) : Pop the top object in stack s.
« Cost: T(pop)=0(1).
— MultiPop(s,k) ; Pop the top k objects in stack s.
» Cost: T(mp) = O(size(s)) worst case
Assumption: Start with an empty stack

Simple analysis: For N operations, the maximum size of stack is
N. Since the cost of MultiPop under the worst case is O(N),
which is the largest in all three operations, the total cost of N
operations must be less than N x T(mp) = O(N?).

03/02/04 Lecture 15 19

Amortized analysis: Stack Operations

e Intuition: Worst case cannot happen all the time!
 |dea: pay a dollar for every operation, and then count carefully.

« Suppose we pay 2 dollars for each Push operation, one to pay
for the operation itself, and another for “future use” (we pin it to
the object on the stack).

« When we do Pop or MultiPop operations to pop objects, instead
of paying from our pocket, we pay the operations with the extra
dollar pinned to the objects that are being popped.

 So the total cost of N operations must be less than 2 x N
« Amortized cost = T(N)/N = 2.

03/02/04 Lecture 15 20

Problem 2: Binary Counter

« Data Structure: binary counter b.
« QOperations: Inc(b).
— Cost of Inc(b) = number of bits flipped in the operation.

« What's the total cost of N operations when this counter
counts up to integer N?

« Approach 1: simple analysis

— The size of the counter is log(N). The worst case will be that
every bit is flipped in an operation, so for N operations, the
total cost under the worst case is O(Nlog(N))

03/02/04 Lecture 15 21

Approach 2: Binary Counter

* Intuition: Worst case cannot happen all the time!

000000
000001 Bit O flips every time, bit 1 flips every other
000010 time, bit 2 flips every fourth time, etc. We

e)
000011 ;fnnef:onclude that for bit k, it flips every 2
000100 So the total bits flipped in N operations, when
000101 the counter counts from 1 to N, will be =?
000110 N N = 1
000111 |[T(N)= Z—k Z_k

o k=

So the amortized cost will be T(N)/N = 2.

03/02/04 Lecture 15 22

Approach 3: Binary Counter

For k bit counters, the total cost is
t(k) =2 xt(k-1) +1
So for N operations, T(N) = t(log(N)).
t(k) = ?
T(N) can be proved to be bounded by 2N.

03/02/04 Lecture 15

23

Amortized Analysis: Potential Method

e For the n operations, the data structure goes through states: D,
D,, D,, ..., D with costs c,, C,, ..., C,

» Define potential function ®(D): represents the potential energy
of data structure after i, operation.

» The amortized cost of the iy, operation is defined by:

C, =C, _|_cD(Di)—CI)(Di_1)

 The total amortized cost is

03/02/04 Lecture 15 24

Potential Method - Cont’d

e |f ®(D,)>o(D,)

then ici Ve

which then acts as an upper bound for the total cost.

So we need to define a suitable potential function
such that this function is always non-negative.

03/02/04 Lecture 15 25

Potential Method: Stack

- Define ®(D) = # of items on stack
¢ (I)(Do) =0

- ¢(D,)=0

Coush = Cpuen +1=2

=Cpyp —1=0

=C

push

(qp)

Pop

—k=k-k=0

O

multipop (k) multipop (k)

N N
ZC < Zé — Zépush +Zémultipop +Zépop — Zépush < 2N

03/02/04 Lecture 15 26

Potential Method: Binary Counter

- Define ®(D) = # of 1's in counter
¢ (I)(Do) - O
- ¢(D,)=0

C=C+AD=(k+1)+(1-k)=2

ZN:C<ZN:6:2N

03/02/04 Lecture 15

	Priority Queue
	Graphs
	Graph Traversal
	Connectivity
	Biconnectivity: Generalizing Connectivity
	Biconnected Components
	Biconnected Components
	Amortized Analysis
	Problem 1: Stack Operations
	Amortized analysis: Stack Operations
	Problem 2: Binary Counter
	Approach 2: Binary Counter
	Approach 3: Binary Counter
	Amortized Analysis: Potential Method
	Potential Method - Cont’d
	Potential Method: Stack
	Potential Method: Binary Counter

