
03/02/04 Lecture 15 1

Priority Queue
• Operations

– MAXIMUM(S) ,
– INSERT(S, x)
– EXTRACT-MAX(S)
– INCREASE-KEY(S, x, k)

• Implementation
– Use a HEAP.
– MAXIMUM:

• Return value stored at root.
– INSERT:

• Insert at last leaf and percolate up tree.
– EXTRACT-MAX:

• Delete root of heap and call HEAPIFY.
– INCREASE-KEY:

• Change value and percolate up tree.

03/02/04 Lecture 15 2

Graphs

• Graph G(V,E)
• V Vertices or Nodes
• E Edges or Links: pairs of vertices
• D Directed vs. Undirected edges
• Weighted vs Unweighted
• Graphs can be augmented to store extra info (e.g.,

city population, oil flow capacity, etc.)
• Paths and Cycles
• Subgraphs G’(V’,E’), where V’ is a subset of V and

E’ is a subset of E
• Trees and Spanning trees

03/02/04 Lecture 15 3

03/02/04 Lecture 15 4

Graph Traversal

• Visit every vertex and every edge.
• Traversal has to be systematic so that no vertex

or edge is missed.
• Just as tree traversals can be modified to solve

several tree-related problems, graph traversals
can be modified to solve several problems.

03/02/04 Lecture 15 5

DFS(G)
1. For each vertex u ∈ V[G] do
2. color[u] ← WHITE
3. π[u] ← NIL
4. Time ← 0
5. For each vertex u ∈ V[G] do
6. if color[u] = WHITE then
7. DFS-VISIT(u)

Depth
First
Search

DFS-VISIT(u)
1. VisitVertex(u)
2. Color[u] ← GRAY
3. Time ← Time + 1
4. d[u] ← Time
5. for each v ∈ Adj[u] do
6. VisitEdge(u,v)
7. if (v ≠ π[u]) then
8. if (color[v] = WHITE) then
9. π[v] ← u
10. DFS-VISIT(v)
11. color[u] ← BLACK
12. F[u] ← Time ← Time + 1

03/02/04 Lecture 15 6

03/02/04 Lecture 15 7

03/02/04 Lecture 15 8

03/02/04 Lecture 15 9

BFS(G,s)
1. For each vertex u ∈V[G] – {s} do
2. color[u] ← WHITE
3. d[u] ← ∞
4. π[u] ← NIL
5. Color[u] ← GRAY
6. D[s] ← 0
7. π[s] ← NIL
8. Q ← Φ
9. ENQUEUE(Q,s)
10. While Q ≠ Φ do
11. u ← DEQUEUE(Q)
12. VisitVertex(u)
13. for each v ∈ Adj[u] do
14. VisitEdge(u,v)
15. if (color[v] = WHITE) then
16. color[v] ← GRAY
17. d[v] ← d[u] + 1
18. π[v] ← u
19. ENQUEUE(Q,v)
20. color[u] ← BLACK

Breadth
First
Search

03/02/04 Lecture 15 10

Figure 14.30A
A topological sort. The conventions are the same as those in Figure 14.21
(continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/02/04 Lecture 15 11

Figure 14.30B
A topological sort. The conventions are the same as those in
Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/02/04 Lecture 15 12

Figure 14.31A
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/02/04 Lecture 15 13

Figure 14.31B
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/02/04 Lecture 15 14

Connectivity

• A (simple) undirected graph is connected if there
exists a path between every pair of vertices.

• If a graph is not connected, then G’(V’,E’) is a
connected component of the graph G(V,E) if V’ is a
maximal subset of vertices from V that induces a
connected subgraph. (What is the meaning of
maximal?)

• The connected components of a graph correspond
to a partition of the set of the vertices. (What is
the meaning of partition?)

• How to compute all the connected components?
– Use DFS or BFS.

03/02/04 Lecture 15 15

Biconnectivity: Generalizing Connectivity

• A tree is a minimally connected graph.
• Removing a vertex from a connected graph may

make it disconnected.
• A graph is biconnected if removing a single vertex

does not disconnect the graph.
• Alternatively, a graph is biconnected if for every

pair of vertices there exists at least 2 disjoint
paths between them.

• A graph is k-connected if for every pair of
vertices there exists at least k disjoint paths
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.

03/02/04 Lecture 15 16

Biconnected Components

• If a graph is not biconnected, it can be
decomposed into biconnected components.

• An articulation point is a vertex whose removal
disconnects the graph.

• Claim: If a graph is not biconnected, it must have
an articulation point. Proof?

• A biconnected component of a simple undirected
graph G(V,E) is a maximal set of edges from E that
induces a biconnected subgraph.

03/02/04 Lecture 15 17

Biconnected Components

03/02/04 Lecture 15 18

Amortized Analysis

• In amortized analysis, we are looking for the time
complexity of a sequence of n operations, instead of
the cost of a single operation.

• Cost of a sequence of n operations = n S(n), where
S(n) = worst case cost of each of the n operations

• Amortized Cost = T(n)/n, where T(n) = worst case
total cost of the n operations in the sequence.

• Amortized cost can be small even when some
operations in that sequence are expensive. Often,
the worst case may not occur in every operation.
The cost of expensive operations may be ‘paid for’ by
charging to other less expensive operations.

03/02/04 Lecture 15 19

Problem 1: Stack Operations

• Data Structure: Stack
• Operations:

– Push(s,x) : Push object x into stack s.
• Cost: T(push)= O(1).

– Pop(s) : Pop the top object in stack s.
• Cost: T(pop)=O(1).

– MultiPop(s,k) ; Pop the top k objects in stack s.
• Cost: T(mp) = O(size(s)) worst case

• Assumption: Start with an empty stack
• Simple analysis: For N operations, the maximum size of stack is

N. Since the cost of MultiPop under the worst case is O(N),
which is the largest in all three operations, the total cost of N
operations must be less than N x T(mp) = O(N2).

03/02/04 Lecture 15 20

Amortized analysis: Stack Operations

• Intuition: Worst case cannot happen all the time!
• Idea: pay a dollar for every operation, and then count carefully.
• Suppose we pay 2 dollars for each Push operation, one to pay

for the operation itself, and another for “future use” (we pin it to
the object on the stack).

• When we do Pop or MultiPop operations to pop objects, instead
of paying from our pocket, we pay the operations with the extra
dollar pinned to the objects that are being popped.

• So the total cost of N operations must be less than 2 x N
• Amortized cost = T(N)/N = 2.

03/02/04 Lecture 15 21

Problem 2: Binary Counter

• Data Structure: binary counter b.
• Operations: Inc(b).

– Cost of Inc(b) = number of bits flipped in the operation.
• What’s the total cost of N operations when this counter

counts up to integer N?
• Approach 1: simple analysis

– The size of the counter is log(N). The worst case will be that
every bit is flipped in an operation, so for N operations, the
total cost under the worst case is O(Nlog(N))

03/02/04 Lecture 15 22

Approach 2: Binary Counter

• Intuition: Worst case cannot happen all the time!
000000
000001
000010
000011
000100
000101
000110
000111

Bit 0 flips every time, bit 1 flips every other
time, bit 2 flips every fourth time, etc. We
can conclude that for bit k, it flips every 2k

time.
So the total bits flipped in N operations, when
the counter counts from 1 to N, will be = ?

NNNNT
k

k

N

k
k 2

2
1

2
)(

0

log

0
=<= ∑∑

∞

==

So the amortized cost will be T(N)/N = 2.

03/02/04 Lecture 15 23

Approach 3: Binary Counter

• For k bit counters, the total cost is
t(k) = 2 x t(k-1) + 1

• So for N operations, T(N) = t(log(N)).
• t(k) = ?
• T(N) can be proved to be bounded by 2N.

03/02/04 Lecture 15 24

Amortized Analysis: Potential Method
• For the n operations, the data structure goes through states: D0,

D1, D2, …, Dn with costs c1, c2, …, cn

• Define potential function Φ(Di): represents the potential energy
of data structure after ith operation.

• The amortized cost of the ith operation is defined by:

• The total amortized cost is

() ()1ˆ −Φ−Φ+= iiii DDcc

() ()() () ()

() ()() ∑∑

∑∑∑

==

==
−

=

+Φ−Φ−=

+Φ−Φ=Φ−Φ+=

n

i
in

n

i
i

n

i
in

N

i
iii

n

i
i

cDDc

cDDDDcc

1
0

1

1
0

1
1

1

ˆ

ˆ

03/02/04 Lecture 15 25

Potential Method - Cont’d

• If
then

which then acts as an upper bound for the total cost.
So we need to define a suitable potential function
such that this function is always non-negative.

() ()0DDn Φ≥Φ

∑∑
==

≤
n

i
i

n

i
i cc

11

ˆ

03/02/04 Lecture 15 26

Potential Method: Stack

• Define F(D) = # of items on stack
• F(D0) = 0
• F(Dn) ¥ 0

Ncccccc

kkkcc

cc

cc

pushpopmultipoppush

NN

kmultipopkmultipop

poppop

pushpush

2ˆˆˆˆˆ

0ˆ
01ˆ
21ˆ

)()(

<=++=<

=−=−=

=−=

=+=

∑∑∑∑∑∑

03/02/04 Lecture 15 27

Potential Method: Binary Counter

• Define F(D) = # of 1’s in counter
• F(D0) = 0
• F(Dn) ¥ 0

() ()

Ncc

kkcc
NN

2ˆ

211ˆ

=<

=−++=∆Φ+=

∑∑

	Priority Queue
	Graphs
	Graph Traversal
	Connectivity
	Biconnectivity: Generalizing Connectivity
	Biconnected Components
	Biconnected Components
	Amortized Analysis
	Problem 1: Stack Operations
	Amortized analysis: Stack Operations
	Problem 2: Binary Counter
	Approach 2: Binary Counter
	Approach 3: Binary Counter
	Amortized Analysis: Potential Method
	Potential Method - Cont’d
	Potential Method: Stack
	Potential Method: Binary Counter

