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Amortized Analysis

• In amortized analysis, we are looking for the time 
complexity of a sequence of n operations, instead of 
the cost of a single operation.

• Cost of a sequence of n operations = n S(n), where 
S(n) = worst case cost of each of the n operations

• Amortized Cost = T(n)/n, where T(n) = worst case 
total cost of the n operations in the sequence. 

• Amortized cost can be small even when some 
operations in that sequence are expensive.  Often, 
the worst case may not occur in every operation.  
The cost of expensive operations may be ‘paid for’ by 
charging to other less expensive operations.
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Problem 1: Stack Operations

• Data Structure:  Stack
• Operations: 

– Push(s,x) : Push object x into stack s.
• Cost: T(push)= O(1).

– Pop(s) : Pop the top object in stack s.
• Cost: T(pop)=O(1).

– MultiPop(s,k) ; Pop the top k objects in stack s.
• Cost: T(mp) = O(size(s)) worst case

• Assumption: Start with an empty stack
• Simple analysis: For N operations, the maximum size of stack is 

N.  Since the cost of MultiPop under the worst case is O(N), 
which is the largest in all three operations, the total cost of N
operations must be less than N x T(mp) = O(N2).
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Amortized analysis: Stack Operations

• Intuition: Worst case cannot happen all the time! 
• Idea: pay a dollar for every operation, and then count carefully.
• Suppose we pay 2 dollars for each Push operation, one to pay 

for the operation itself, and another for “future use” (we pin it to 
the object on the stack).

• When we do Pop or MultiPop operations to pop objects, instead 
of paying from our pocket, we pay the operations with the extra 
dollar pinned to the objects that are being popped.

• So the total cost of N operations must be less than 2 x N
• Amortized cost = T(N)/N = 2.  
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Problem 2: Binary Counter

• Data Structure:  binary counter b.
• Operations:  Inc(b).   

– Cost of Inc(b) = number of bits flipped in the operation.
• What’s the total cost of N operations when this counter 

counts up to integer N?
• Approach 1:  simple analysis

– The size of the counter is log(N).  The worst case will be that 
every bit is flipped in an operation, so for N operations, the 
total cost under the worst case is O(Nlog(N))
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Approach 2: Binary Counter

• Intuition: Worst case cannot happen all the time! 
000000
000001
000010
000011
000100
000101
000110
000111

Bit 0 flips every time, bit 1 flips every other 
time, bit 2 flips every fourth time, etc.   We 
can conclude that for bit k, it flips every 2k

time. 
So the total bits flipped in  N operations, when 
the counter counts from 1 to N, will be = ?
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So the amortized cost will be T(N)/N = 2.
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Approach 3: Binary Counter

• For k bit counters, the total cost is 
t(k) = 2 x t(k-1) + 1  

• So for N operations, T(N) = t(log(N)).
• t(k) = ?
• T(N) can be proved to be bounded by 2N.
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Amortized Analysis: Potential Method
• For the n operations, the data structure goes through states: D0, 

D1, D2, …, Dn with costs c1, c2, …, cn 

• Define potential function Φ(Di): represents the potential energy
of data structure after ith operation.

• The amortized cost of the ith operation is defined by:

• The total amortized cost is
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Polynomial-time computations

• An algorithm has time complexity O(T(n)) if it runs 
in time at most cT(n) for every input of length n.

• An algorithm is a polynomial-time algorithm if its 
time complexity is O(p(n)), where p(n) is polynomial 
in n.
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Polynomials

• If f(n) = polynomial function in n,
then f(n) = O(nc), for some fixed constant c

• If f(n) = exponential (super-polynomial)  function 
in n,

then f(n) = ω(nc), for any constant c
• Composition of polynomial functions are also 

polynomial, i.e., 
f(g(n)) = polynomial if f() and g() are polynomial

• If an algorithm calls another polynomial-time 
subroutine a polynomial number of times, then the 
time complexity is polynomial.
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The class P

• A problem is in P if there exists a polynomial-time 
algorithm that solves the problem.

• Examples of P
– DFS: Linear-time algorithm exists
– Sorting: O(n log n)-time algorithm exists
– Bubble Sort: Quadratic-time algorithm O(n2)
– APSP: Cubic-time algorithm O(n3)

• P is therefore a class of problems (not 
algorithms)!
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The class NP

• A problem is in NP if there exists a non-
deterministic polynomial-time algorithm that 
solves the problem.

• A problem is in NP if there exists a 
(deterministic) polynomial-time algorithm that 
verifies a solution to the problem.

• All problems in P are in NP
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TSP: Traveling Salesperson Problem

• Input:
– Weighted graph, G
– Length bound, B

• Output:
– Is there a traveling salesperson tour in G of length at 

most B?

• Is TSP in NP?
– YES. Easy to verify a given solution.

• Is TSP in P?
– OPEN! 
– One of the greatest unsolved problems of this century!
– Same as asking: Is P = NP?
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So, what is NP-Complete?

• NP-Complete problems are the “hardest” problems 
in NP.

• We need to formalize the notion of “hardest”.
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Terminology

• Problem: 
– An abstract problem is a function (relation) from a set I 

of instances of the problem to a set S of solutions. 
p: I → S

– An instance of a problem p is obtained by assigning values 
to the parameters of the abstract problem.

– Thus, describing the set of all instances (I.e., possible 
inputs) and the set of corresponding outputs defines a 
problem. 

• Algorithm: 
– An algorithm that solves problem p must give correct

solutions to all instances of the problem.
• Polynomial-time algorithm: 
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Terminology (Cont’d)
• Input Length:

– length of an encoding of an instance of the problem.
– Time and space complexities are written in terms of it.

• Worst-case time/space complexity of an algorithm
– Is the maximum time/space required by the algorithm on any 

input of length n.
• Worst-case time/space complexity of a problem

– UPPER BOUND: worst-case time complexity of best existing 
algorithm that solves the problem.

– LOWER BOUND: (provable) worst-case time complexity of best 
algorithm (need not exist) that could solve the problem. 

– LOWER BOUND ≤ UPPER BOUND

• Complexity Class P :
– Set of all problems p for which polynomial-time algorithms exist
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Terminology (Cont’d)
• Decision Problems:

– Are problems for which the solution set is {yes, no}
– Example: Does a given graph have an odd cycle?
– Example: Does a given weighted graph have a TSP tour of 

length at most B?
• Complement of a decision problem:

– Are problems for which the solution is “complemented”.
– Example: Does a given graph NOT have an odd cycle?
– Example: Is every TSP tour of a given weighted graph of length 

greater than B?
• Optimization Problems:

– Are problems where one is maximizing (or minimizing) some 
objective function.

– Example: Given a weighted graph, find a MST.
– Example: Given a weighted graph, find an optimal TSP tour.

• Verification Algorithms:
– Given a problem instance i and a certificate s, is s a solution for 

instance i?
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Terminology (Cont’d)

• Complexity Class P :
– Set of all problems p for which polynomial-time 

algorithms exist.

• Complexity Class NP :
– Set of all problems p for which polynomial-time 

verification algorithms exist.

• Complexity Class co-NP :
– Set of all problems p for which polynomial-time 

verification algorithms exist for their complements, I.e., 
their complements are in NP.
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Terminology (Cont’d)

• Reductions: p1 → p2
– A problem p1 is reducible to p2, if there exists an 

algorithm R that takes an instance i1 of p1 and outputs an 
instance i2 of p2, with the constraint that the solution for 
i1 is YES if and only if the solution for i2 is YES. 

– Thus, R converts YES (NO) instances of p1 to YES (NO) 
instances of p2.

• Polynomial-time reductions: p1 p2
– Reductions that run in polynomial time.

⎯→⎯P

• If p1 p2, then
–If p2 is easy, then so is p1.          p2 ∈ P   ⇒ p1 ∈ P 
–If p1 is hard, then so is p2.          p1 ∉ P   ⇒ p2 ∉ P 

⎯→⎯P
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What are NP-Complete problems?

• These are the hardest problems in NP.

• A problem p is NP-Complete if 
– there is a polynomial-time reduction from every problem 

in NP to p.
– p∈ NP

• How to prove that a problem is NP-Complete?

• Cook’s Theorem: [1972]
–The SAT problem is NP-Complete.

Steve Cook, Richard Karp, Leonid Levin
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NP-Complete vs NP-Hard

• A problem p is NP-Complete if 
– there is a polynomial-time reduction from every problem 

in NP to p.
– p∈ NP

• A problem p is NP-Hard if 
– there is a polynomial-time reduction from every problem 

in NP to p.
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The SAT Problem: an example

• Consider the boolean expression:
C = (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (a ∨ ¬d ∨ ¬c)

• Is C satisfiable?
• Does there exist a True/False assignments to the 

boolean variables a, b, c, d, e, such that C is True?
• Set a = True and d = True. The others can be set 

arbitrarily, and C will be true.
• If C has 40,000 variables and 4 million clauses, 

then it becomes hard to test this.
• If there are n boolean variables, then there are 2n

different truth value assignments. 
• However, a solution can be quickly verified!
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The SAT (Satisfiability) Problem
• Input: Boolean expression C in Conjunctive normal 

form (CNF) in n variables and m clauses.
• Question: Is C satisfiable? 

– Let C = C1 ∧ C2 ∧ …  ∧ Cm
– Where each Ci = 
– And each        ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn} 
– We want to know if there exists a truth assignment to all the 

variables in the boolean expression C that makes it true. 
• Steve Cook showed that the problem of deciding whether a 

non-deterministic Turing machine T accepts an input w or 
not can be written as a boolean expression CT for a SAT 
problem. The boolean expression will have length bounded by 
a polynomial in the size of T and w.
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• How to now prove Cook’s theorem? Is SAT in NP? 
• Can every problem in NP be poly. reduced to it ?
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The problem classes and their relationships

co-NP NPNPP NP-C



04/06/04 Lecture 22 24

More NP-Complete problems

3SAT
• Input: Boolean expression C in Conjunctive normal 

form (CNF) in n variables and m clauses. Each 
clause has at most three literals.

• Question: Is C satisfiable? 
– Let C = C1 ∧ C2 ∧ …  ∧ Cm

– Where each Ci = 
– And each        ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn} 
– We want to know if there exists a truth assignment to all 

the variables in the boolean expression C that makes it 
true. 
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3SAT  is NP-Complete.
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More NP-Complete problems?

2SAT
• Input: Boolean expression C in Conjunctive normal 

form (CNF) in n variables and m clauses. Each 
clause has at most three literals.

• Question: Is C satisfiable? 
– Let C = C1 ∧ C2 ∧ …  ∧ Cm

– Where each Ci = 
– And each        ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn} 
– We want to know if there exists a truth assignment to all 

the variables in the boolean expression C that makes it 
true. 

i
jy

( )ii yy 21 ∨

2SAT  is in P.
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3SAT is NP-Complete

• 3SAT is in NP.
• SAT can be reduced in polynomial time to 3SAT.
• This implies that every problem in NP can be 

reduced in polynomial time to 3SAT. Therefore, 
3SAT is NP-Complete.

• So, we have to design an algorithm such that:
• Input: an instance C of SAT
• Output: an instance C’ of 3SAT such that 

satisfiability is retained. In other words, C is 
satisfiable if and only if C’ is satisfiable.
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3SAT is NP-Complete

• Let C be an instance of SAT with clauses C1, C2, …, 
Cm

• Let Ci be a disjunction of k > 3 literals.
Ci = y1 ∨ y2 ∨ … ∨ yk

• Rewrite Ci as follows:
C’i = (y1 ∨ y2 ∨ z1) ∧

(¬ z1 ∨ y3 ∨ z2) ∧
(¬ z2 ∨ y4 ∨ z3) ∧
…
(¬ zk-3 ∨ yk-1 ∨ yk) 

• Claim: Ci is satisfiable if and only if C’i is 
satisfiable. 
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2SAT  is in P
• If there is only one literal in a clause, it must be 

set to true.
• If there are two literals in some clause, and if one 

of them is set to false, then the other must be set 
to true. 

• Using these constraints, it is possible to check if 
there is some inconsistency. 

• How? Homework problem! 
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The CLIQUE Problem

• A clique is a completely connected subgraph.

CLIQUE
• Input: Graph G(V,E) and integer k
• Question: Does G have a clique of size k?
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CLIQUE is NP-Complete

• CLIQUE is in NP.
• Reduce 3SAT to CLIQUE in polynomial time. 
• F = (x1∨¬x2∨x3) (¬x1∨¬x3∨x4) (x2∨x3∨¬x4) (¬x1∨¬x2∨x3)

F is satisfiable if and 
only if G has a clique 
of size k where k is 
the number of clauses
in F.

x1

¬x2

x3

¬x1 ¬x3
x4
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Vertex Cover

A vertex cover is a set of vertices that “covers” all 
the edges of the graph.

Examples



Vertex Cover (VC)

Input: Graph G, integer k
Question: Does G contain a vertex cover of size k?
• VC is in NP.
• polynomial-time reduction from CLIQUE to VC.
• Thus VC is NP-Complete.

V

G

V

G’

Claim: G’ has a clique of size k’ if and only if G has a 
VC of size k = n – k’
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Hamiltonian Cycle Problem (HCP)

Input: Graph G
Question: Does G contain a hamiltonian cycle?

• HCP is in NP.
• There exists a polynomial-time reduction from 

3SAT to HCP.
• Thus HCP is NP-Complete.

• Notes/animations by Yi Ge!
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