
04/06/04 Lecture 22 1

Amortized Analysis

• In amortized analysis, we are looking for the time
complexity of a sequence of n operations, instead of
the cost of a single operation.

• Cost of a sequence of n operations = n S(n), where
S(n) = worst case cost of each of the n operations

• Amortized Cost = T(n)/n, where T(n) = worst case
total cost of the n operations in the sequence.

• Amortized cost can be small even when some
operations in that sequence are expensive. Often,
the worst case may not occur in every operation.
The cost of expensive operations may be ‘paid for’ by
charging to other less expensive operations.

04/06/04 Lecture 22 2

Problem 1: Stack Operations

• Data Structure: Stack
• Operations:

– Push(s,x) : Push object x into stack s.
• Cost: T(push)= O(1).

– Pop(s) : Pop the top object in stack s.
• Cost: T(pop)=O(1).

– MultiPop(s,k) ; Pop the top k objects in stack s.
• Cost: T(mp) = O(size(s)) worst case

• Assumption: Start with an empty stack
• Simple analysis: For N operations, the maximum size of stack is

N. Since the cost of MultiPop under the worst case is O(N),
which is the largest in all three operations, the total cost of N
operations must be less than N x T(mp) = O(N2).

04/06/04 Lecture 22 3

Amortized analysis: Stack Operations

• Intuition: Worst case cannot happen all the time!
• Idea: pay a dollar for every operation, and then count carefully.
• Suppose we pay 2 dollars for each Push operation, one to pay

for the operation itself, and another for “future use” (we pin it to
the object on the stack).

• When we do Pop or MultiPop operations to pop objects, instead
of paying from our pocket, we pay the operations with the extra
dollar pinned to the objects that are being popped.

• So the total cost of N operations must be less than 2 x N
• Amortized cost = T(N)/N = 2.

04/06/04 Lecture 22 4

Problem 2: Binary Counter

• Data Structure: binary counter b.
• Operations: Inc(b).

– Cost of Inc(b) = number of bits flipped in the operation.
• What’s the total cost of N operations when this counter

counts up to integer N?
• Approach 1: simple analysis

– The size of the counter is log(N). The worst case will be that
every bit is flipped in an operation, so for N operations, the
total cost under the worst case is O(Nlog(N))

04/06/04 Lecture 22 5

Approach 2: Binary Counter

• Intuition: Worst case cannot happen all the time!
000000
000001
000010
000011
000100
000101
000110
000111

Bit 0 flips every time, bit 1 flips every other
time, bit 2 flips every fourth time, etc. We
can conclude that for bit k, it flips every 2k

time.
So the total bits flipped in N operations, when
the counter counts from 1 to N, will be = ?

NNNNT
k

k

N

k
k 2

2
1

2
)(

0

log

0
=<= ∑∑

∞

==

So the amortized cost will be T(N)/N = 2.

04/06/04 Lecture 22 6

Approach 3: Binary Counter

• For k bit counters, the total cost is
t(k) = 2 x t(k-1) + 1

• So for N operations, T(N) = t(log(N)).
• t(k) = ?
• T(N) can be proved to be bounded by 2N.

04/06/04 Lecture 22 7

Amortized Analysis: Potential Method
• For the n operations, the data structure goes through states: D0,

D1, D2, …, Dn with costs c1, c2, …, cn

• Define potential function Φ(Di): represents the potential energy
of data structure after ith operation.

• The amortized cost of the ith operation is defined by:

• The total amortized cost is

() ()1ˆ −Φ−Φ+= iiii DDcc

() ()() () ()

() ()() ∑∑

∑∑∑

==

==
−

=

+Φ−Φ−=

+Φ−Φ=Φ−Φ+=

n

i
in

n

i
i

n

i
in

N

i
iii

n

i
i

cDDc

cDDDDcc

1
0

1

1
0

1
1

1

ˆ

ˆ

04/06/04 Lecture 22 8

Polynomial-time computations

• An algorithm has time complexity O(T(n)) if it runs
in time at most cT(n) for every input of length n.

• An algorithm is a polynomial-time algorithm if its
time complexity is O(p(n)), where p(n) is polynomial
in n.

04/06/04 Lecture 22 9

Polynomials

• If f(n) = polynomial function in n,
then f(n) = O(nc), for some fixed constant c

• If f(n) = exponential (super-polynomial) function
in n,

then f(n) = ω(nc), for any constant c
• Composition of polynomial functions are also

polynomial, i.e.,
f(g(n)) = polynomial if f() and g() are polynomial

• If an algorithm calls another polynomial-time
subroutine a polynomial number of times, then the
time complexity is polynomial.

04/06/04 Lecture 22 10

The class P

• A problem is in P if there exists a polynomial-time
algorithm that solves the problem.

• Examples of P
– DFS: Linear-time algorithm exists
– Sorting: O(n log n)-time algorithm exists
– Bubble Sort: Quadratic-time algorithm O(n2)
– APSP: Cubic-time algorithm O(n3)

• P is therefore a class of problems (not
algorithms)!

04/06/04 Lecture 22 11

The class NP

• A problem is in NP if there exists a non-
deterministic polynomial-time algorithm that
solves the problem.

• A problem is in NP if there exists a
(deterministic) polynomial-time algorithm that
verifies a solution to the problem.

• All problems in P are in NP

04/06/04 Lecture 22 12

TSP: Traveling Salesperson Problem

• Input:
– Weighted graph, G
– Length bound, B

• Output:
– Is there a traveling salesperson tour in G of length at

most B?

• Is TSP in NP?
– YES. Easy to verify a given solution.

• Is TSP in P?
– OPEN!
– One of the greatest unsolved problems of this century!
– Same as asking: Is P = NP?

04/06/04 Lecture 22 13

So, what is NP-Complete?

• NP-Complete problems are the “hardest” problems
in NP.

• We need to formalize the notion of “hardest”.

04/06/04 Lecture 22 14

Terminology

• Problem:
– An abstract problem is a function (relation) from a set I

of instances of the problem to a set S of solutions.
p: I → S

– An instance of a problem p is obtained by assigning values
to the parameters of the abstract problem.

– Thus, describing the set of all instances (I.e., possible
inputs) and the set of corresponding outputs defines a
problem.

• Algorithm:
– An algorithm that solves problem p must give correct

solutions to all instances of the problem.
• Polynomial-time algorithm:

04/06/04 Lecture 22 15

Terminology (Cont’d)
• Input Length:

– length of an encoding of an instance of the problem.
– Time and space complexities are written in terms of it.

• Worst-case time/space complexity of an algorithm
– Is the maximum time/space required by the algorithm on any

input of length n.
• Worst-case time/space complexity of a problem

– UPPER BOUND: worst-case time complexity of best existing
algorithm that solves the problem.

– LOWER BOUND: (provable) worst-case time complexity of best
algorithm (need not exist) that could solve the problem.

– LOWER BOUND ≤ UPPER BOUND

• Complexity Class P :
– Set of all problems p for which polynomial-time algorithms exist

04/06/04 Lecture 22 16

Terminology (Cont’d)
• Decision Problems:

– Are problems for which the solution set is {yes, no}
– Example: Does a given graph have an odd cycle?
– Example: Does a given weighted graph have a TSP tour of

length at most B?
• Complement of a decision problem:

– Are problems for which the solution is “complemented”.
– Example: Does a given graph NOT have an odd cycle?
– Example: Is every TSP tour of a given weighted graph of length

greater than B?
• Optimization Problems:

– Are problems where one is maximizing (or minimizing) some
objective function.

– Example: Given a weighted graph, find a MST.
– Example: Given a weighted graph, find an optimal TSP tour.

• Verification Algorithms:
– Given a problem instance i and a certificate s, is s a solution for

instance i?

04/06/04 Lecture 22 17

Terminology (Cont’d)

• Complexity Class P :
– Set of all problems p for which polynomial-time

algorithms exist.

• Complexity Class NP :
– Set of all problems p for which polynomial-time

verification algorithms exist.

• Complexity Class co-NP :
– Set of all problems p for which polynomial-time

verification algorithms exist for their complements, I.e.,
their complements are in NP.

04/06/04 Lecture 22 18

Terminology (Cont’d)

• Reductions: p1 → p2
– A problem p1 is reducible to p2, if there exists an

algorithm R that takes an instance i1 of p1 and outputs an
instance i2 of p2, with the constraint that the solution for
i1 is YES if and only if the solution for i2 is YES.

– Thus, R converts YES (NO) instances of p1 to YES (NO)
instances of p2.

• Polynomial-time reductions: p1 p2
– Reductions that run in polynomial time.

⎯→⎯P

• If p1 p2, then
–If p2 is easy, then so is p1. p2 ∈ P ⇒ p1 ∈ P
–If p1 is hard, then so is p2. p1 ∉ P ⇒ p2 ∉ P

⎯→⎯P

04/06/04 Lecture 22 19

What are NP-Complete problems?

• These are the hardest problems in NP.

• A problem p is NP-Complete if
– there is a polynomial-time reduction from every problem

in NP to p.
– p∈ NP

• How to prove that a problem is NP-Complete?

• Cook’s Theorem: [1972]
–The SAT problem is NP-Complete.

Steve Cook, Richard Karp, Leonid Levin

04/06/04 Lecture 22 20

NP-Complete vs NP-Hard

• A problem p is NP-Complete if
– there is a polynomial-time reduction from every problem

in NP to p.
– p∈ NP

• A problem p is NP-Hard if
– there is a polynomial-time reduction from every problem

in NP to p.

04/06/04 Lecture 22 21

The SAT Problem: an example

• Consider the boolean expression:
C = (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (a ∨ ¬d ∨ ¬c)

• Is C satisfiable?
• Does there exist a True/False assignments to the

boolean variables a, b, c, d, e, such that C is True?
• Set a = True and d = True. The others can be set

arbitrarily, and C will be true.
• If C has 40,000 variables and 4 million clauses,

then it becomes hard to test this.
• If there are n boolean variables, then there are 2n

different truth value assignments.
• However, a solution can be quickly verified!

04/06/04 Lecture 22 22

The SAT (Satisfiability) Problem
• Input: Boolean expression C in Conjunctive normal

form (CNF) in n variables and m clauses.
• Question: Is C satisfiable?

– Let C = C1 ∧ C2 ∧ … ∧ Cm
– Where each Ci =
– And each ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
– We want to know if there exists a truth assignment to all the

variables in the boolean expression C that makes it true.
• Steve Cook showed that the problem of deciding whether a

non-deterministic Turing machine T accepts an input w or
not can be written as a boolean expression CT for a SAT
problem. The boolean expression will have length bounded by
a polynomial in the size of T and w.

()i
k

ii
i

yyy ∨∨∨ L21
i
jy

• How to now prove Cook’s theorem? Is SAT in NP?
• Can every problem in NP be poly. reduced to it ?

04/06/04 Lecture 22 23

The problem classes and their relationships

co-NP NPNPP NP-C

04/06/04 Lecture 22 24

More NP-Complete problems

3SAT
• Input: Boolean expression C in Conjunctive normal

form (CNF) in n variables and m clauses. Each
clause has at most three literals.

• Question: Is C satisfiable?
– Let C = C1 ∧ C2 ∧ … ∧ Cm

– Where each Ci =
– And each ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
– We want to know if there exists a truth assignment to all

the variables in the boolean expression C that makes it
true.

i
jy

()iii yyy 321 ∨∨

3SAT is NP-Complete.

04/06/04 Lecture 22 25

More NP-Complete problems?

2SAT
• Input: Boolean expression C in Conjunctive normal

form (CNF) in n variables and m clauses. Each
clause has at most three literals.

• Question: Is C satisfiable?
– Let C = C1 ∧ C2 ∧ … ∧ Cm

– Where each Ci =
– And each ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
– We want to know if there exists a truth assignment to all

the variables in the boolean expression C that makes it
true.

i
jy

()ii yy 21 ∨

2SAT is in P.

04/06/04 Lecture 22 26

3SAT is NP-Complete

• 3SAT is in NP.
• SAT can be reduced in polynomial time to 3SAT.
• This implies that every problem in NP can be

reduced in polynomial time to 3SAT. Therefore,
3SAT is NP-Complete.

• So, we have to design an algorithm such that:
• Input: an instance C of SAT
• Output: an instance C’ of 3SAT such that

satisfiability is retained. In other words, C is
satisfiable if and only if C’ is satisfiable.

04/06/04 Lecture 22 27

3SAT is NP-Complete

• Let C be an instance of SAT with clauses C1, C2, …,
Cm

• Let Ci be a disjunction of k > 3 literals.
Ci = y1 ∨ y2 ∨ … ∨ yk

• Rewrite Ci as follows:
C’i = (y1 ∨ y2 ∨ z1) ∧

(¬ z1 ∨ y3 ∨ z2) ∧
(¬ z2 ∨ y4 ∨ z3) ∧
…
(¬ zk-3 ∨ yk-1 ∨ yk)

• Claim: Ci is satisfiable if and only if C’i is
satisfiable.

04/06/04 Lecture 22 28

2SAT is in P
• If there is only one literal in a clause, it must be

set to true.
• If there are two literals in some clause, and if one

of them is set to false, then the other must be set
to true.

• Using these constraints, it is possible to check if
there is some inconsistency.

• How? Homework problem!

04/06/04 Lecture 22 29

The CLIQUE Problem

• A clique is a completely connected subgraph.

CLIQUE
• Input: Graph G(V,E) and integer k
• Question: Does G have a clique of size k?

04/06/04 Lecture 22 30

CLIQUE is NP-Complete

• CLIQUE is in NP.
• Reduce 3SAT to CLIQUE in polynomial time.
• F = (x1∨¬x2∨x3) (¬x1∨¬x3∨x4) (x2∨x3∨¬x4) (¬x1∨¬x2∨x3)

F is satisfiable if and
only if G has a clique
of size k where k is
the number of clauses
in F.

x1

¬x2

x3

¬x1 ¬x3
x4

04/06/04 Lecture 22 31

Vertex Cover

A vertex cover is a set of vertices that “covers” all
the edges of the graph.

Examples

Vertex Cover (VC)

Input: Graph G, integer k
Question: Does G contain a vertex cover of size k?
• VC is in NP.
• polynomial-time reduction from CLIQUE to VC.
• Thus VC is NP-Complete.

V

G

V

G’

Claim: G’ has a clique of size k’ if and only if G has a
VC of size k = n – k’

04/06/04 Lecture 22 32

04/06/04 Lecture 22 33

Hamiltonian Cycle Problem (HCP)

Input: Graph G
Question: Does G contain a hamiltonian cycle?

• HCP is in NP.
• There exists a polynomial-time reduction from

3SAT to HCP.
• Thus HCP is NP-Complete.

• Notes/animations by Yi Ge!

	Amortized Analysis
	Problem 1: Stack Operations
	Amortized analysis: Stack Operations
	Problem 2: Binary Counter
	Approach 2: Binary Counter
	Approach 3: Binary Counter
	Amortized Analysis: Potential Method
	Polynomial-time computations
	Polynomials
	The class P
	The class NP
	TSP: Traveling Salesperson Problem
	So, what is NP-Complete?
	Terminology
	Terminology (Cont’d)
	Terminology (Cont’d)
	Terminology (Cont’d)
	Terminology (Cont’d)
	What are NP-Complete problems?
	NP-Complete vs NP-Hard
	The SAT Problem: an example
	The SAT (Satisfiability) Problem
	The problem classes and their relationships
	More NP-Complete problems
	More NP-Complete problems?
	3SAT is NP-Complete
	3SAT is NP-Complete
	2SAT is in P
	The CLIQUE Problem
	CLIQUE is NP-Complete
	Vertex Cover
	Vertex Cover (VC)
	Hamiltonian Cycle Problem (HCP)

