New Algorithms for Disk Scheduling

Matthew Andrews*  Michael A. Bender!  Lisa Zhang?

Abstract

Processor speed and memory capacity are increasing several times
faster than disk speed. This disparity suggests that disk I/O perfor-
mance could become an important bottleneck. Methods are needed
for using disks more efficiently. Past analysis of disk scheduling al-
gorithms has largely been experimental and little attempt has been
made to develop algorithms with provable performance guarantees.

We consider the following disk scheduling problem. Given a set of
requests on a computer disk and a convex reachability function that
determines how fast the disk head travels between tracks, our goal is
to schedule the disk head so that it services all the requests in the
shortest time possible. We present a 3/2-approximation algorithm
(with a constant additive term). For the special case in which the
reachability function is linear we present an optimal polynomial-time
solution.

The disk scheduling problem is related to the special case of the
asymmetric Traveling Salesman Problem with the triangle inequality
(ATsP-A) in which all distances are either 0 or some constant o. We
show how to find the optimal tour in polynomial time and describe how
this gives another approximation algorithm for the disk scheduling
problem. Finally we consider the on-line version of the problem in
which uniformly-distributed requests arrive over time. We present an
algorithm related to the above ATSP-A.
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1 Introduction

Computer processor speed and disk and memory capacity are increasing by
over 40% per year. In contrast, disk speed is increasing more gradually,
growing by only 7% per year [19]. Since this rate is unlikely to change sub-
stantially in the near future, I/O performance may become the bottleneck
in most computer systems. However, despite the difficulty of improving me-
chanical components, we can still aim to use the disks more efficiently.

For example, disks generally operate at a small fraction of their maximum
bandwidth. Experiments have shown that sophisticated disk head scheduling
algorithms can deliver higher throughput [20, 12, 23]. This past research has
focused almost exclusively on two types of workloads: synthetic workloads,
where disk requests are randomly and uniformly distributed across the disk,
and more recently, traces, where the requests to an actual disk are recorded
and used to test algorithms. However, for these or for general workloads,
researchers have made little attempt to develop algorithms with provable
performance guarantees. In addition, no one has determined the compu-
tational complexity of the disk scheduling problem. There is a risk that
synthetic workloads and traces from a few environments may not represent
all possible situations.

In this paper we propose several disk-scheduling algorithms having perfor-
mance guarantees and we state a hardness result. The research has provided
additional payoffs. The first, of practical interest, is a heuristic for the on-
line problem. The second payoff is of theoretical interest: the disk problem
suggests algorithms for a special case of the asymmetric traveling salesman
problem with the triangle inequality (ATSP-A). Before defining our problem
formally we describe the structure of a modern disk.

The Disk

A computer disk is composed of several concentric, rapidly-rotating platters,
where data may be written to both sides of each platter. Platters are logically
divided into circular tracks. A cylinder is composed of all the circular tracks
having the same radius. (See Figure 1.) The smallest unit that can be
written to disk is called a sector, which typically holds 512 bytes of data.
Modern disks have approximately 2000 cylinders and 100 sectors per track.
The data is transferred to and from the disk by a set of read/write heads



(usually one per surface). The disk arm moves the heads in concert, so that
all of the heads are contained in one cylinder. For this reason we can restrict
our attention to one disk platter and one disk head.

When a head accesses a particular sector, it suffers two kinds of delays.
The seek time is the time required to move the head to the correct track; the
rotational latency is the time necessary, once the head is in the correct track,
for the requested sector to pass underneath the head. Modern disks rotate
at a speed of 3600-7200 rpm (implying that one rotation takes 8-16 msec).
With today’s technology, the time for a track-to-track seek (one track to a
neighboring track) is typically 1 msec; the time for a full-seek (the innermost
to the outermost track) is typically 20 msec. Small seeks are dominated by a
constant start-up time, medium-length seeks by a period of acceleration and
deceleration, and long seeks by a period of constant speed. In the following
table we give the specifications from [19] for the Hewlett-Packard 97560 disk.

sector size (bytes) 512
number of cylinders 1962
tracks per cylinder 19
data sectors per track 72
revolution speed (rpm) 4002
seek time (msec) for d tracks
d < 383 3.24 + 0.400v/d
d > 383 8.00 + 0.008d

The Problem

In this paper we chiefly consider the off-line version of the disk scheduling
problem. The input consists of a set of points on the disk (which we call
requests) and a convex reachability function which determines how long it
takes the disk head to move between tracks. Our goal is to schedule the disk
head so that it services (i.e. visits) all of the requests in the shortest possible
time. Note that if we consider the motion of the head relative to the disk
then the problem becomes a special case of the Traveling Salesman Problem.
We also consider an on-line version of the disk scheduling problem in which
the requests arrive over time and are placed into a buffer. The head is able
to service any request that is currently in the buffer. Our goal is to maximize



the throughput.

Our Results

In this paper we present the following results.

e 3/2-approximation algorithm. Let T;,,; be the minimum number of
rotations in an optimal schedule. For general reachability functions we
show how to service all of the requests in at most %Topt + a rotations,
where value a depends solely on the reachability function, not on the
number of requests. (See Section 3.)

e NP-hardness proof. For general reachability functions we show that
the disk-scheduling problem is NP-hard. (See the appendix.)

e Optimal algorithm for linear reachability functions. Now sup-
pose that the reachability function is linear. A linear reachability func-
tion means that the disk has no acceleration — the disk head has either
no radial velocity or full radial velocity. Naturally this assumption is
unrealistic. However, it provides insight into the structure and diffi-
culty of the general problem. We show how to construct an optimal
schedule. (See Section 4.)

¢ Optimal and approximation algorithms for special cases of ATSP-
A. We provide an optimal solution to the Asymmetric Traveling Sales-
man Problem with the triangle inequality (ATSP-A) in which all dis-
tances are either 0 or a for some value o« > 0. This extends to a
g—approximation algorithm for the case in which all distances are ei-

ther 0 or lie between « and [ for some values 0 < a < 3. This latter

result leads to another approximation algorithm for disk scheduling

with general reachability functions. (See Section 5.)

e Online algorithm. For the problem in which requests arrive over time
we present heuristics to service requests at a high rate (i.e. achieve high
throughput). (See Section 6.)

Related Work

Computer disks have been used for many years and consequently the problem
of disk scheduling has received a great deal of attention. Most early papers,



(e.g., [11, 3, 21, 9, 15, 22]) focus primarily on the algorithms first-come-
first-served (FCFS), CSCAN, shortest-seek-first (SsF) and modifications and
generalizations of these algorithms.

The most well known scheduling algorithm CSCAN is used the UNIX op-
erating system. In this algorithm, the head starts at one side of the disk and
travels to the other, servicing all the requests in a track as the head passes
over it. When the head completes this pass it performs a full seek back to
its starting position and repeats. A close relative of CSCAN is the SCAN al-
gorithm in which the head services requests as it travels in both directions
across the disk. The SCAN algorithm is often thought to be inferior to csCAN
since the times at which it visits the inner and outer tracks are less evenly
spaced than the times at which it visits the middle tracks. Consequently, the
algorithm does not treat requests as fairly as CSCAN does.

The shortest-seek-first (sSF) algorithm always moves the head to the re-
quest in the track nearest the disk head. Under heavy workloads SSF may
treat some requests unfairly. For instance, the head could remain over one
portion of the disk and not service the requests in the other regions of the
disk; these requests are said to starve.

A continuum of algorithms, V' (R), defined by a parameter R, were pro-
posed by Geist and Daniel [8]. Here, the distance to a request is equal to
the seek distance if the head can move there while maintaining its current
radial direction. However, if the head must change direction then the dis-
tance is the seek distance plus (full radial distance) x R. The head moves
to the request that is at the smallest such distance from its current position.
For extreme values of R: V(0) = sSF and V(1) = SCAN. Geist and Daniel
proposed V' (0.2) as an algorithm that performs well.

For each of the above algorithms, the scheduler does not take into account
the rotational position of the request, only its track number. Although useful
in the past, this design principle currently makes less sense for several rea-
sons. First, in older disks the seek time was the dominating factor limiting
performance. In modern disks, however, the rotational latency also plays a
significant role since seek times are decreasing at a higher rate than rotational
latency. Furthermore, since processor speed is increasing faster than disk
speed, a modern processor, dedicated to the task of disk head scheduling,
can execute algorithms that are more computationally expensive. Finally,
memory capacity has increased dramatically. Thus, it is possible to buffer a
large number of requests to be serviced in a highly-efficient order.



Seltzer, Chen, and Ousterhout [20] and Jacobson and Wilkes [12] sim-
ulated the algorithm shortest-time-first (STF) which always services the re-
quest that can be reached in the shortest amount of time (i.e., the time to
seek to the correct track plus the time for the request to rotate underneath
the disk head). The results of [12] and [20] indicate that for randomly gen-
erated requests, STF has better throughput than algorithms that do not take
rotational position into account. Although the algorithm STF is prone to
starvation, the effects can be lessened if older requests are given higher pri-
ority or if the disk head is sometimes forcibly moved to a new region of the
disk.

A number of recent papers attempt to model disks and disk activity.
Ruemmler and Wilkes [19] and Kotz, Toh, and Radhakrishnan [13] developed
detailed models of Hewlett-Packard disks. In a separate paper Ruemmler and
Wilkes [18] describe disk activity in various UNIX systems. The traces they
obtained were later used by Worthington, Ganger, and Patt [23] to evaluate
existing disk scheduling algorithms. Methods for obtaining exact disk drive
specifications were given by Worthington, Ganger, Patt, and Wilkes in [24].

Most previous scheduling algorithms have two often-conflicting goals: in-
creasing throughput and preventing starvation (when a request languishes
in the buffer without being serviced). Preventing starvation could become
less important since nonvolatile memory (NVRAM, i.e. memory that retains
its stored values during a system power loss) is emerging as a viable tech-
nology [1, 10]. If the disk buffer (which stores data before it is written to
disk) consists of NVRAM then it is not essential for every write to get to disk
fast. Hence for writes, throughput becomes the most important performance
measure. (Servicing read requests is not considered as much of a potential
bottleneck, because many reads can be avoided as cache sizes increase.)

In this paper we focus exclusively on the problem of increasing through-
put. Previously existing techniques [20, 12] or NVRAM could be used to
prevent starvation.

2 The Model

A computer disk is in the shape of an annulus having a radial distance of 1
between the inner and outer circle. The disk rotates at a constant rate. A
movable disk head travels in and out radially in order to access locations on



the disk. (In our presentation we consider the motion of the head relative to
the disk and so the head not only moves radially but also moves around the
disk at a constant rate.) An instance of the disk scheduling problem consists
of a set of n locations on the disk. These n locations represent requests to
be serviced by the disk head. To service a request, the disk head must be at
the request and have no radial movement. A solution to the disk problem is
a path of the disk head that services all n requests. An optimal solution is
one that requires the minimum number of rotations.

The Reachability Function

Associated with a disk drive is a function f(#), which we call the reachability
function. In a rotation through angle 0, the function f() represents the
maximum radial distance the head can travel when it starts and ends with
no radial movement. Since the annulus has thickness 1, we have 0 < f(0) < 1.
For convenience, we let f(f#) = 0 for § < 0. Thus, from any starting-point
the function f(6) defines the reachable region in the #-r plane; we call this
region the reachability cone. The reachability function f has the following
properties.

1. Function f is nondecreasing since given more time the disk head can
visit a larger fraction of the disk. That is, f' > 0 where f’ is the first
derivative of f. (We can assume that the derivative, f’, exists since the
radial speed of the disk head is well-defined.)

2. Function f is convex, implying that the slope of f is nondecreasing.
The intuition for convexity is as follows. The head accelerates as much
as possible and stays at the maximum radial speed as long as possible
(if the maximum speed is reached) before decelerating.

3. Properties 1 and 2 imply that f(6 +6') > f(0) + f(¢') for 6,6" > 0.

We define tpyjgeex to be the minimum number of rotations (not necessarily
integral) required for the head to travel the entire radial distance. That is,
2Tt puseek = argming f(0) = 1. On modern disks 1 < tpsee < 3, and usually
Lruliseek < 2.



The Representation of the Disk and the Requests

For ease of presentation we view the disk as a 27 x 1 rectangle. Each request
R; is specified by coordinates (6;,7;), where 0 <r; < 1and 0 < 6; < 27. The
distance between two requests R; = (6;,r;) and R; = (6;,r;) is defined by,

d(R;, Rj) = d((0;,7;),(8;,r;)) = min{integers k : f(8; —6;+2km) > |r;—r|}.

In other words, the distance from request R; to R; is equal to the number
of times that the head must cross the line # = 0 when traveling from R;
to R;. (The distance between R; and R; could be defined as the angular
distance through which the head must travel in order to service R; and then
R;. However, our integral definition of distance facilitates many of our later
proofs.) Note that this distance is asymmetric. To reflect the “rotational
nature” of the disk we also use (6; + 2k, r;) to denote request R;, and we
sometimes represent multiple copies of the disk by a 2km x 1 rectangle.

The disk graph is a directed graph whose vertices are the requests and
whose directed edges are the ordered pairs of vertices. The weight on the
directed edge R;R; is d(R;, R;).

3 A 3/2-Approximation Algorithm

In this section we present an algorithm that services all of the requests on
the disk in at most %Topt + a rotations, where T, is the number of rotations
required by an optimal algorithm that returns the disk head to its starting
position. The additive term a depends solely on the reachability function. It
is not a function of the number of requests. We do not look for an optimal
solution since we show in the appendix that the problem is NP-hard.

The Minimum-cost Cycle Cover and a Lower Bound

We first use a minimum-cost cycle cover of the disk graph to derive a lower
bound LB for T, and then present an algorithm that services all the re-
quests in %LB + a rotations. For a graph G, let C denote a collection of
cycles in G. If every node of GG is contained in exactly one cycle, then C is
called a cycle cover of G. For edge-weighted graphs the cost of a cycle cover,
C, is the sum of the weights of the edges in C. A minimum-cost cycle cover



of G has the minimum cost among all the cycle covers of G. Recall that in
the disk graph, the length of an edge R;R; is equal to the number of times
that the head must cross the line § = 0 when traveling from request R; to
request I;.

The problem of finding a minimum-cost cycle cover is equivalent to solving
an assignment problem derived from the edge weights [5]. In an assignment
problem we have a weighted bipartite graph (L, R). The goal is to find a
minimum-cost matching in which all vertices in L are matched. Given an
n-vertex graph G with vertex set {wp,...,v, 1}, we construct a 2n-node
bipartite graph with vertex sets L = {{y,...,¢, 1} and R = {ro,..., 1 1}.
There is an edge of weight w between /¢; and r; if and only if there is an edge
of weight w between v; and v; in G. A matching in which all nodes in L
(and hence all nodes in R) are matched defines a permutation of the nodes
in G. By elementary results in algebra this permutation can be decomposed
into disjoint cyclic permutations, each of which corresponds to a cycle in G.
Hence the matching in (L, R) gives a cycle cover in G. It is easy to see that
the weight of the matching is equal to the weight of the cycle cover. This
demonstrates the equivalence of solving the assignment problem and finding
a minimum-cost cycle cover. We can solve the assignment problem in O(n?)
time using the Hungarian method of Kuhn [14, 16].

Let C denote a minimum-cost cycle cover of the disk graph, and let C®
denote the set of cycles in C with cost i. Let p be the maximum cost of a
cycle in C. Then € = CWUC® U...UC®P). Let K be the total cost of C, i.e.
K =" i|C®|, where |C®] is the number of cycles in C*). Note that K is a
lower bound on 7, since an optimal solution to the disk scheduling problem
is a cycle cover. Our algorithm finds an order in which to service the cycles
in C such that the disk head can move between the cycles without using “too
many” rotations. (Note that the head can travel between an arbitrary pair
of cycles in tgpseex + 1 rotations. This immediately gives us a (fgseek + 1)-
approximation algorithm. However, by being more careful about the order in
which the cycles are serviced, we shall reduce the time taken to travel between
cycles and hence reduce the approximation ratio.) An approach based on
finding a minimum-cost cycle cover was independently proposed by [6], but
no performance guarantees were provided for the resulting algorithms.
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The Virtual Trace

Before describing the algorithm in detail, we need to define a wvirtual trace to
connect neighboring requests on a cycle. A virtual trace does not describe
the actual trace of the disk head, but rather an imaginary path defined by
the reachability function f. Consider a cycle ¢ € C%. Let R; = (0;,71;),
for 1 < 5 < m, be the requests on ¢, numbered such that request R, =
(61,71) satisfies 6 = miny<;<,, 0;, and RiRy, RoRs, ..., Ry 1Ry, Ry Ry are
directed edges in the cycle cover. For each ¢ € C¥) we shall view the disk
as a 2im x 1 rectangle, T, i.e. i copies of the disk are joined end to end.
As demonstrated in Figure 3, we represent the requests on cycle ¢ so that
every request appears exactly once in rectangle 7. Formally, R, appears at
location (¢q,71) for ¢ = 6;. Request R; for 2 < j < m appears at (¢;,7;),
where ¢j = 9]' — 9]',1 —+ (ﬁj,l + 21{?]‘71' and kj = d(ijl, R])

Consider two neighboring requests R; and R, which appear at locations
(¢j,7;) and (Pj+1,7j41) respectively. The trace connecting them is composed
of a horizontal line (of possibly zero length) followed by a curve defined by f
or —f. (See Figure 3.) Formally, the virtual trace is defined as follows. By
the definition of ¢; and ¢;1, one can verify that there exists ¢' € [¢;, ;1]
such that f(¢;4+1 — ¢') = |rj — rjq1|. For rjq > r; let,

[y for ¢; <0 < ¢
96(0)_{ B FO-6) Tor gl <0< o

The virtual trace between R; and R;,; is defined parametrically by (6, g.(f))
for ¢; <0 < ¢;41. The case in which 74, < r; is analogous. The trace from
R, to R; is obtained from the trace connecting (¢, ) and (2im + ¢, 7).
If Ry is the only request on ¢ then the trace is the horizontal line r = r;.
The next four lemmas describe some properties of the virtual trace of cycle

ceC,

Lemma 1 If the virtual trace can connect two requests within an angle 0
then the disk head can service both of them within a rotation through angle

6.

Proof: The result follows from the definitions of the virtual trace and
the reachability function f. O

Lemma 2 If R; and Ry, are two requests on cycle ¢ € C® and they appear
at (¢;,7) and (¢r, k) respectively, then |rj —ri| < f(im).

11



Proof: =~ Without loss of generality, we assume j < k. Either ¢, — ¢; < i7
or (2im + ¢;) — ¢y, < im. If the former case holds then,

k
re =] <> F(0r—0,-1)
=j+1
k
< SOY (Be—0p-0)) < f(im).
(=j+1

The first inequality follows the definition of the reachability function. The
second and third inequalities follow from properties 3 and 1 of f respectively.
A similar argument applies for the case in which (2im + ¢;) — ¢ <im. O

Lemma 3 For a cycle ¢ € C%, the slope of the virtual trace (0, g.(0)) is
between — f'(im) and f'(im) for 0 < 0 < 2im.

Proof: By construction, the virtual trace g. for cycle ¢ is composed of
the curves defined by f and —f. In particular, g.(8) = ry = f(60 — ¢') for
O < 0 < ¢py1 and @' € [dg, dry1]. (Recall that f(f) = 0 for < 0.)
Lemma 2 implies that ¢ 1 — ¢ < im. Property 2 of f therefore implies the
result. O

We now consider the positioning of cycles in C*). Recall that f(i7) is the
radial distance that the head can travel after i/2 rotations of the disk, given
that the head starts and ends at rest. Let ¢; = [1/f(im)]. For each C( the
rectangle T is divided into smaller rectangles Tl(i), z(i), RPN Tq(f), each of
size at most 2im X f(im). A request R = (6,r) is in rectangle Tj(i) if and only
if (j—1)f(im) <r <yj- f(ir). We have,

Lemma 4 If (0, g.(0)) is in rectangle Tj(i) then the trace of cycle c either

stays in rectangles Tj(i) and Tj(i)l or else it stays in rectangles Tj(i) and Tj(i)l.

Proof:  If (1) is some request on ¢ € C) then by Lemma 2 the trace
of ¢ stays in the horizontal stripe defined by r, — f(in) < r < ry + f(in).
Since rectangles Tj(z) are of size 2im x f(im), the result follows. O
For a cycle ¢ € C® let the centerpoint of cycle ¢, denoted by centerpoint(c),
be the point (i, g.(i7)) on the virtual trace, and let the leftpoint of cycle ¢,
denoted by leftpoint(c), be the point (0, g.(0)) = (2i7, g.(2i7)) on the trace.

12



For an angle p € [0,2im), let a, be the first request on the virtual trace of
c that appears after the line § = p. We use the phrase cycle c is serviced
starting at angle p to mean that . is the first request on ¢ to be serviced and
the other requests on ¢ are serviced in the order of the cycle. (See Figure 4.)

The Algorithm

The algorithm HEADSCHEDULE is shown in Figure 2. It proceeds by finding a
min-cost cycle cover of the disk graph and then determining a particular order
in which to service the cycles. For each cycle, HEADSCHEDULE identifies the
first request to visit and then travels around the cycle servicing all of the
requests. Our goal is to show that the disk head can connect the last request
of a cycle to the first request of the next cycle without using “too many”
rotations.

A cycle ¢ € C% is long if i > 2L where L = [tyseex | + 1; otherwise ¢ is
short. Note that in L rotations, the head can travel from any request to any
other request. The long cycles can therefore be serviced in any order and the
number of rotations required is at most

p ) p ) 3 P )
> AlCP+ 3 Lo < 5 Y i|ow). (1)
1=2L 1=2L 2 1=2L

Hence, the approximation ratio of 3/2 is achieved for servicing the long cycles.

We therefore focus on the order in which HEADSCHEDULE services the
short cycles. The algorithm first services the cycles in C™ and then the
cycles in €@, etc. By Lemma 4, cycles in C® can be divided into the
following groups. (See Figure 5.)

1. The hill group H](i) consists of cycles ¢ whose leftpoint (0, g.(0)) is in
rectangle Tj(z) and whose centerpoint (im, g.(i7)) is in rectangle Tj(z) or

Ty

2. The valley group Vj(i) consists of cycles ¢ whose leftpoint is in rectangle

Tj(i) and whose centerpoint is in rectangle Tj(i)l.

To service the cycles in C), HEADSCHEDULE services the requests in rect-
angle T from bottom to top when 7 is odd and services requests in 7®*) from

13



top to bottom when i is even. To be more precise, for odd - HEADSCHEDULE
first services the cycles in Hfi) and then the cycles in Vl(i), Q(i) and VZ(i), etc;
for even 1 HEADSCHEDULE first services cycles in Hq(f) and then cycles in
Vi H(~D and V{7 etc. The subroutine CYCLECONNECT specifies the
order in which HEADSCHEDULE services the cycles in H]@ and Vj(i) and also
identifies the first request to be serviced on each cycle. (See Figures 2 and
6.) Hence, the order in which HEADSCHEDULE services all the requests on
the disk is fully determined.

To complete the analysis, we shall show that the approximation ratio of
3/2 is achieved for servicing short cycles. In particular, we show in Lemma 6
that HEADSCHEDULE uses %i|H](Z)| rotations (resp. %i|V;-(Z)| rotations) to
service all the cycles in H](i) (resp. Vj(i)). Then in the proof of Lemma 7 we

show that the head can travel between H]@ and Vj(l) etc. in a small number
of rotations.

Let v be a point of the form (0,r,) and consider the reachability cone
rooted at v. Let functions hy(6) and hs(6) define the upper and lower bound-
aries of the cone, i.e. hy(0) = r, + f(0) and hy(0) = r, — f(0). For a cycle
c € CW let o, = (99, 7(9) be the first request on ¢ that appears after the
line § = im. For simplicity we assume that ¢(© > iz. (For the case in which
¢'©) < im, the location of ., can be taken to be at (2ir + ¢, (%)) for the
analysis. ) Figure 7 illustrates Lemma 5 and its proof.

Lemma 5 If the centerpoint of cycle c is in the reachability cone rooted at -y,
then a is in the reachability cone rooted at y. That is, if hy(ir) < g.(im) <
ha(im), then by (¢9) < go(¢'9) < ha(¢().

Proof:  The definition of h; and hy implies that ) (6) = f'(0) and h(0) =
—f'(0). By Lemma 3, the virtual trace of cycle ¢ never has a slope whose
absolute value is greater than f’(im). Since f' is nondecreasing by Property
2 of f, we have hy(0) < ¢.(0) < h\(F) for § > im. Therefore, if hy(ir) <
g.(it) < ho(im) then hi(¢l9) < g.(¢9) < hy(¢@) for ¢l© > ir. Stated
differently, if the centerpoint of the virtual trace is in the reachability cone,
then the trace can never leave the cone after passing through the centerpoint,
i.e. the point (6, g.(f)) is in the cone for any 6 > ir. 0

Lemma 6 Subroutine CYCLECONNECT services all the cycles in H](i) (resp.

V;-(i)) n %Z|H](Z)| rotations (r@gp_ %2|‘/;(l)| rotations).

14



Proof: Stated intuitively, we show that CYCLECONNECT uses i/2 rota-
tions to travel to the next cycle and then uses 7 rotations to service all the
requests on this cycle. Let ¢, € H](Z) and ¢, € H]@ be the unserviced cycles
that have the highest centerpoint and lowest leftpoint, respectively. Suppose
that CYCLECONNECT services ¢, followed by ¢,. Let 3, be the last request
on cycle ¢, before leftpoint(cy,) and let ay be the first request on cycle ¢; after
centerpoint(c,). (Note that 3, is serviced last on cycle ¢, and ay is serviced
first on ¢;. See Figure 6.) By the definition of the virtual trace it is clear
that leftpoint(cy,) is reachable from [y, i.e. leftpoint(cy) is in the reachability
cone rooted at (. The following two arguments show that centerpoint(cy) is
in the reachability cone rooted at leftpoint(cy).

Case 1: Centerpoint(c,) is in Tj(i). Since the height of Tj(i) is f(im),
centerpoint(c,) is reachable from leftpoint(cy,).

Case 2: Centerpoint(cy) is in 7}(?1. Centerpoint(c,) is higher than
centerpoint(c,) by the definition of ¢;,. Since centerpoint(cy) is reachable
from leftpoint(cy), centerpoint(cy) is reachable from leftpoint(cy).

Lemma 5 implies that ay is in this reachability cone and is hence reach-
able from [j,. Therefore the head services the requests in ¢;,, moves to cycle
¢ and services the requests in ¢, in 7 +¢/2 + ¢ = 5i/2 rotations. An analo-
gous argument can be applied to show that after servicing any cycle in H](i)

(resp. V;-(i)) the next cycle can be serviced in 3i/2 rotations. For example,
after servicing ¢y, the head can travel to the unserviced cycle with the highest
centerpoint in /2 rotations. The result follows. a

Lemma 7 HEADSCHEDULE services all the short cycles in,

2L—-1 2L—-1

3. 3.
> §2|C(l)|+ > 214
i=1

i—1
rotations, where L = [transeex | + 1.

Proof: Let i be an odd integer that satisfies 1 < i < 2L — 1. (The case
when i is even is similar.) HEADSCHEDULE can finish serving the requests in
C® — 1 with the head positioned at a point in rectangle Tl(i_l) with angular
coordinate 0. Since rectangle Tl(i) contains Tl(i_l) the head can move to its

first request in C in i/2 rotations.
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Now consider a call to the subroutine CYCLECONNECT (HJ(-i) V;-(i)). By

Lemma 6, in %Z|Hj(l)| rotations the head can service all the requests in H](i)

and return to a point in Tj(i) with angular coordinate 0. The beginning of the

first cycle in Vj(i) is in Tj(i) and so the head can move there in i/2 rotations.

Using Lemma 6 again, we have that in %Z|V;(Z)| rotations the head can service

all the requests in V;-(i) and return to a point in Tj(i) with angular coordinate

0. The beginning of the first cycle in HJ(QI is in Tj(i)l and hence the head can

move there in ¢ rotations. Summing over all ;7 and ¢ we obtain the result.

d

Since ¢; = [1/f(im)] and f(ir) > if(w) by Property 3 of f, we have

ig; < i+ q. Hence, Y717 2ig; < 3Lgy + 3L%. Combined with the analysis
for long cycles (see inequality 1) we have,

Theorem 8 The algorithm HEADSCHEDULE has a 3/2-approzimation ratio
with an additive term of at most 3Lq, + 3L?, where L = [truseex ] + 1-

4 An Optimal Algorithm for Linear Reacha-
bility Functions

Although the disk scheduling problem is NP-hard for general reachability
functions, optimal solutions can be obtained for a special case. In this special
case, the head either has no radial movement or else has full radial speed s.
The reachability function is therefore linear, i.e. f(f) = sf. In addition, we
require that the disk head starts at the point (0,0) and ends at (0, 1).

One can verify that the linearity of f ensures the reachability property.
That is, regardless of its current speed, the head can follow any head path
passing through its current position. To be more precise, suppose that on
one rotation the disk head goes from point A to point B to point C, and
on another rotation the disk head goes from point D to point B to point E.
Then the head can go from A to B to E or from D to B to C. (Note that
A, B, etc. are any points on the head path, not necessarily requests.) The
reachability property does not hold for general reachability functions.

Suppose that P is a head path that services all the requests. If P requires
m rotations let (4, gp(¢)), 0 < ¢ < 2mm, be the location of the head after it
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rotates through an angle ¢. Path P satisfies the monotone property if gp(¢) <
gp(¢+ 2km) for any ¢ and positive integer k, where 0 < ¢ < ¢+ 2km < 2mr.

Lemma 9 Suppose that the disk head must start at (0,0) and end at (0,1).
Then there exists an optimal solution to the disk scheduling problem such that
the monotone property is satisfied.

Proof: Consider any optimal solution and its corresponding path P.
Suppose that P requires m rotations. We construct a new path ) with m
rotations such that () preserves monotonicity and can be followed by the disk
head. In particular, for any angle 6 € [0, 27) and integer i € [0,m — 1], let
9o (0 + 2im) be the ith smallest value from gp(#), gp(6 + 27), ..., gp(6 +
2(m—1)m). (See Figure 8.) By construction, the path @ that corresponds to
g takes m rotations and preserves monotonicity. The reachability property
implies that () is realizable by the disk head. O

We now describe a situation in which monotonicity is violated. Consider
the point (¢, ry). The region under (¢y, o) consists of points (¢, ), where,

{0§T<T0—f(¢—¢o) for ¢ > ¢o
0<r<ro— flpo—¢) for ¢ <.

(See Figure 9.) If a request R = (0,r), 0 < 6 < 2m, is serviced on the
(k + 1)st rotation, then we say that R is serviced at angle 2km + 6. We have
the following.

Lemma 10 Suppose request R = (0,r) is serviced at angle 2km+6. If, when
R is serviced, there are unserviced requests in the region under (2km + 0, 1),
then monotonicity is violated.

Proof: Let g be the function that describes the head path. Suppose that
in the region under (2km+0, r) there is an unserviced request U = (0+0,, 1),
-1 < 0, < 7. Then g(2kr +6) = r and ¢g(2(m + 6 + 0,) = r, for some
¢ > k. Since U is unserviced and in the region under (2kw + 6,r), we
must have g(2¢r + ) < r by definition of the region under a point, i.e.
g(20r 4+ 0) < g(2km + 0) for some ¢ > k. O
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An optimal algorithm. We present an optimal algorithm MONOTONE
that services the requests in the following order. The disk head starts at
(0,0). Let the current head position be (¢g,79) where ¢, is the actual angle
through which the head has rotated. Suppose that R = (#,1), where 0 <
f < 2m, is the next request to be serviced by MONOTONE, and suppose that
R is serviced at angle ¢ = 2km + 6. The following conditions are used to
determine R.

1. The reachability cone rooted at (g, r¢) contains (¢, r);
2. There are no unserviced requests in the region under (¢, r);

3. Request R is the first one that is in the cone rooted at (¢g,ry) and
that satisfies condition 2. Stated differently, for any unserviced request
R' = (#',r"), if there exists a k' such that ¢' = 2k'm +0', ¢pg < ¢’ < ¢
and (¢, r') is in the cone rooted at (¢, ), then there are unserviced
requests under the point (¢', r').

By Lemma 9 there exists an optimal solution OPT such that the monotone
property is satisfied. The following theorem shows that if OPT serviced some
request before MONOTONE does, then OPT would have to violate monotonic-
ity. Hence, MONOTONE cannot perform worse than OPT.

Theorem 11 Let OPT be any optimal algorithm that preserves monotonic-
ity. Algorithms OPT and MONOTONE require the same number of rotations
to service all the requests.

Proof: To obtain a contradiction we assume MONOTONE requires more
rotations than OpT. Let R;, R,, ... be the order in which MONOTONE
services all the requests. Let R; = (6;,7;) be the first request that OpT
services before MONOTONE. Suppose OPT services R; at angle ¢; = 2km+-0;,
which implies that MONOTONE services I; at an angle greater than ¢;. Let
R; = (0;,r;), i < j, be the last request MONOTONE services before angle
¢;. Suppose MONOTONE services R; at angle ¢; = 2k'm + 0;, where ¢; < ¢,.
There are two cases to consider. (See Figure 10.)

Case 1. R, is outside the reachability cone rooted at (¢;,7;). By condition
2, (¢j,7;) is above the cone. This implies that OPT cannot service R; at an
angle ¢ € [¢;, ¢,], since OPT services R; at ¢;. By the definition of R;, OPT
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services R; no earlier than ¢;. Hence, OPT services R; after R;. Lemma 10
implies that OPT violates monotonicity.

Case 2. R; is inside the reachability cone rooted at (¢;,7;). The rea-
son that MONOTONE does not service R; after servicing R; is that there is
some request R, under the point (¢;,7;). This request R, is not serviced
by MONOTONE by angle ¢;, by the definition of R;. However, MONOTONE
services Ry before R; by the construction of the algorithm (i.e. i < ¢ < j).
Hence, the definition of R; implies that R, is not serviced by OPT by angle
¢j. Therefore, OPT services R; before Ry,. Lemma 10 implies that OpPT
violates monotonicity. O

5 A Special Case of the Asymmetric Travel-
ing Salesman Problem

In this section we view the disk scheduling problem as a special case of the
asymmetric traveling salesman problem with the triangle inequality (ATSP-
A). We present an approximation algorithm for this ATSP-A problem and
then obtain another approximation algorithm for the disk scheduling prob-
lem.

In the disk graph, edge lengths are nonnegative integers given by the
distance function defined in Section 2. If the disk head makes a full seek in
Lrunseek TOtations then all edge lengths are at most L = [tgyseek | + 1. However,
an ATSP-A problem that has integer edge lengths from [0, L] is not necessarily
a disk scheduling problem and so the algorithms of the previous sections may
not apply.

The problem we consider in this section can be formally defined as follows.
We are given a graph G with n nodes and a distance function ¢ on these
nodes. The function ¢ is not necessarily symmetric but it satisfies the triangle
inequality, i.e. 6(u,v) + 6(v, w) > §(u, w) for all nodes u, v and w. We first
assume that all distances are 0 or a for some o > 0. We present an optimal
algorithm for this case. Secondly we assume that all distances are either 0
or else lie between a and 3 where 0 < o < (3. In this case we apply the
previous result to obtain a [/a-approximation algorithm. The best known
approximation ratio for a general ATSP-A problem is [log,n]. (See [5].) We
have,
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Theorem 12 Let o > 0. If 6(u,v) € {0,a} for all nodes u and v then the
resulting ATSP-A problem is polynomially solvable.

Proof: We define a relation on the nodes. Let u ~ v if and only if
d(u,v) = d(v,u) = 0. By the triangle inequality this is an equivalence
relation. Let Vi, V5, ... be the equivalence classes induced by this relation.

Define the distance from equivalence class V; to class V; to be ¢'(V;, V;) =
min{o(u,v) : uw € V;,v € V;}. One can verify that the triangle inequality
holds for ¢' and that if ¢'(V;, V) = 0 then §'(V},V;) # 0. Consider now a
directed graph, H, whose nodes are the equivalence classes. A directed edge
(Vi, V;) exists if and only if 6'(V;, V;) = 0. The graph H is acyclic, otherwise
there would exist V; and V; such that ¢'(V;,V;) = ¢'(V;,V;) = 0. By the
triangle inequality on ¢’ and the acyclicity of H, graph H induces a partial
order, (P, <), on the equivalence classes. We say that V; < V; in P if and
only if there is a path from V; to V; in H. Two elements V; and V; in P are
comparable if either V; < V; or V; < V;, and they are incomparable otherwise.
An antichain is a set of elements any two of which are incomparable. A chain
is a set of elements any two of which are comparable.

Lemma 13 Let A be the mazimum cardinality of an antichain. The length
of an optimal tour for our ATSP-A problem is at least aA.

Proof:  Let {V},V5,...,V4} be an antichain of size A. Since, for all i and
3, Vi £ V; and V; £ V;, we have ¢'(V;, V;) = 0'(V;,V;) = a. For all i let v; be
any member of V;. (Recall that V; is an equivalence class of nodes in graph
G.) The definition of ¢’ implies that §(v;, v;) = d(vj,v;) = afor 1 <i,j < A.
The optimal traveling salesman tour must visit all these nodes v;. Hence the
tour has length at least aA. O

It remains to show that we can find a tour that achieves this lower bound.
Our algorithm is based on the following theorem. See [4, 2].

Dilworth’s Theorem If the largest antichain in a partial order (P, <) has
cardinality A, then the partial order can be decomposed into exactly A chains.
Moreover this decomposition can be obtained in polynomial time.

It is clear that no decomposition can have fewer than A chains since every
element of the antichain must be in a different chain. What is remarkable is
that there always exist A chains that cover the whole partial order. (See [2]
for a proof.)
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An optimal tour is constructed from the chains in a minimum-size chain
decomposition. Under the distance function ¢’, the total length of a chain is
0 and the distance from the end of any chain to the beginning of any other
chain is at most a. Given that the size of the maximum antichain is A, we
can therefore link the chains into a cycle of length at most aA. Note that
this is a tour of graph H. To obtain a tour of G, we observe that once a tour
has visited one node in an equivalence class it can visit all the other nodes in
that class in any order without increasing its length. Hence we can construct
a tour of G that has length at most «A. By Lemma 13 this tour is optimal.

Ol

Corollary 14 Let f > a > 0. If either §(u,v) =0 or a < §(u,v) < B for
all nodes w and v then there ezists a [3/a-approzimation algorithm for the
resulting ATSP-A problem.

If we assume that all nonzero distances are v and apply Theorem 12, then
Corollary 14 follows. By the comments at the beginning of this section, if
the disk head can make a full seek in #gseex rotations then Corollary 14 gives
a ([trunseex | + 1)-approximation algorithm for the disk scheduling problem.

(Typically triseex < 2.)

6 The On-line Problem

In this section we consider the on-line disk scheduling problem. Requests
arrive over time and are placed into a buffer. The disk head can only service
requests that are in the buffer. The goal is to maximize the throughput (i.e.
service the requests at a high rate). This situation may be viewed as an
on-line problem in which we have limited look-ahead. In real systems the
requests are known to arrive in a “bursty” fashion [18] and so the preceding
analysis of the off-line problem is useful. Suppose a large group of requests
arrive together and then there is a period in which no requests arrive. We
can use an off-line algorithm to service these requests.

As discussed in Section 1 many algorithms have been studied in the lit-
erature. Of these, shortest-time-first (STF) has been shown to have good
throughput. (Recall that under STF the algorithm services the request that
it can reach in the smallest amount of time. This is equivalent to the request
that it can reach with the smallest amount of rotation.)
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We propose an algorithm CHAIN for the on-line problem that is similar in
spirit to the algorithms of Section 5. The key property of CHAIN is that it has
better look-ahead than STF and we conjecture that it has better throughput.
(By better look-ahead we mean that it considers more than just the next
request that it will service.) An interesting open problem is to obtain a
meaningful comparison of the two algorithms analytically.

6.1 The Algorithm CHAIN

Consider the ¢ requests that are in the buffer. We construct a partial order
on ¢ + 1 points, namely the ¢ requests and the current position of the disk
head, P = (6y,ro). For simplicity assume 6, = 0. We say that two points
R; = (6;,r;) and R; = (0;,7;) (where 6;,6; € [0,2m)) satisfy R; < R; if and
only if d(R;, R;) = 0. (Recall the distance function defined in Section 2.) It
can be verified that this defines a partial order. Note that P is a minimal
element in this partial order. Algorithm CHAIN proceeds by finding the
longest chain whose minimum element is P. It moves the disk head to the
request that is directly above P in this chain. (If the longest chain contains
P only then the algorithm moves the disk head to an arbitrary request.) The
algorithm then repeats, constructing a new partial order.

7 Conclusions

In this paper we presented an analysis of the disk scheduling problem. We
derived an optimal algorithm for linear reachability functions and we ob-
tained a 3/2-approximation algorithm for general reachability functions. We
also presented a heuristic, CHAIN, for the case of online requests.

A number of open problems remain. It would be interesting to obtain a
competitive analysis of online disk scheduling algorithms such as CHAIN and
the previously studied ssF, STF and CSCAN. For the offline problem, it would
be interesting to obtain a lower bound on the best approximation ratio that
can be obtained for general reachability functions.
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A NP-Hardness of Disk Scheduling

In this section we show that given a reachability function and a set of requests
on the disk it is NP-hard to determine the optimal schedule. The reduction
is from the following restricted version of the Directed Hamiltonian Cycle
problem.

e Fact 1 The Directed Hamiltonian Cycle problem is NP-complete even
if each vertex in the graph is adjacent to at most 3 arcs [17, 7].

Outline of the reduction

Given such a graph G with n nodes, we first place requests on a disk with
dimensions poly(n) x poly(n). Later on we rescale the coordinates to obtain
a disk with dimensions 27 x 1. We also construct a reachability function such
that all requests can be serviced in n rotations and the disk head can return
to its starting point if and only if G contains a Hamiltonian cycle.

We shall assume that the disk head must start at a point with angular
coordinate § = 0. There will be four columns of requests that we place on
the disk,

P={p,:veVg} Q={q:veVs}
R={r,:veVg} S={s,:v€Vz},

where Vi; is the vertex set of G. (See Figure 11.) These columns are placed
so that requests in ) have a higher angular coordinate than requests in
P, requests in R have a higher angular coordinate than requests in @, and
requests in S have a higher angular coordinate than requests in R. In addition
the line # = 0 lies between column S and column P. The exact positions of
these columns will be determined later. We also place a set of n chains of
requests on the disk and denote them by {chain, : v € Viz}. The construction
has the following properties.

1. For all v, chain, contains the requests p,, q,, 7, and s,.
2. The requests all have integer coordinates.

3. The head can travel from the end of chain, to the beginning of chain,
crossing § = 0 exactly once if and only if (u,v) is a directed edge in G.
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4. If all the requests are serviced in n rotations then on each rotation
chain, is serviced for some v.

5. The request s, is above s, if and only if r, is above r,.
6. The request ¢, is above ¢, if and only if p, is above p,.

7. For all v, chain, can be serviced in one rotation.

Theorem 15 Suppose that the above properties are satisfied. Then all of the
requests can be satisfied in n rotations and the head can return to its starting
point if and only if G has a Hamiltonian cycle.

Proof: Suppose that G has a Hamiltonian cycle. Let the cycle be
Vg, V1,...,Un_1,V9. Then by Properties 3 and 7 there is a valid solution
with n rotations that has the form,

chain,, chain,,, ..., chain,_ _,.

Conversely, suppose that we can service the requests in n rotations. By
Property 4 the schedule must have the following form.

chain,, chain,,...,chain, .

The head must cross # = 0 only once when traveling from the end of chain,, |,
to the beginning of chain,;. Note also that since the disk head returns to
its starting point, it must be able to travel from the end of chain,  , to the
beginning of chain,, crossing 6 = 0 only once. Therefore by Property 3,
ug, U1, U, - . . Uy _1, Uy Must be a Hamiltonian cycle. O

The Construction

We now define the reachability function that we shall use. It is the simple
function,

£(0) = 62,

27



Enforcing Property 3

We first focus on the region between column S and column P. Suppose
that we can arbitrarily specify distances between requests, i.e. suppose that
the distances are not given by a reachability function. Then the following
construction would immediately guarantee Property 3. We define,

1 if (u,v) is an edge in G
2 otherwise

d(sum) = { 2)
(Recall that the distance from s, to p, is the number of times that the head
must cross the line # = 0 when traveling from s, to p,. Recall also that the
line # = 0 lies between s, and p,.) However we can only specify distances
using a reachability function. Our goal, therefore, is to construct requests
with similar distance relationships using the reachability function f(0) = 6.
We make a new graph G’, consisting of 2n nodes, which lets us define the
requests. We transform each vertex u € G into two vertices iy, Uous € G,
where u;, has only incoming arcs and u,; has only outgoing arcs. Let Vi,
be the set of nodes with incoming arcs only and let V,,; be the set of nodes
with outgoing arcs only. The edges in G’ are defined by,

(tout, vin) € G' & (u,v) € G.

We examine the structure of G'. Notice that without loss of generality all
nodes in the underlying undirected graph of G’ have degree 1 or 2. (If a node
has degree 0 or 3 then G has no Hamiltonian cycle.) An undirected graph
in which all nodes have degree 1 or 2 is a collection of paths and cycles.
Therefore all connected components in G’ have one of two structures. (See
Figure 12.)

1. A sawtooth. All nodes have degree 2 except for exactly two nodes
that have degree 1. The nodes alternate between being in V;, and being
in ‘/;)ut-

2. A circular sawtooth. All nodes have degree 2. They alternate be-
tween Vi, and V.

For each node in G’ we define a request on the disk. More specifically, for
each node ugy € Vout, we define a request s/, and for each node v, € Vi, we
define a request p). These requests will satisty,
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Requirement 16 The head can travel from s, to p., crossing 0 = 0 exactly
once if and only if (Uous, Vin) s an edge in G'.

We now show how to place requests that correspond to a sawtooth. Consider
a sawtooth in which both endnodes are in Vj,. (The other three cases are
analogous.) Let the nodes in the sawtooth be,

1 2 3 k

Uins> Uouty Yins -+ -5 Vin-

(See Figure 12.) We satisfy requirement 16 if,
e s, is located at the point (0, 2i).
e o1 is located at the point (1,2i — 1).

(Recall the definition of the reachability function.)

The case of a circular sawtooth is more difficult. We modify the above
construction to deal with this case. Suppose that the nodes in the circular
sawtooth are,

0 1 k=1 _k 0

Uout> Yins + + +» Yout » Vins Uout-

(See Figure 12.) The requests pli,s.»,...,p\ 2, s x—1 are placed as above.
The request p/, is moved to (2,k + 3). We also place a request s/, at ((1 —
k)/2,—(1—k)?/4+1—k). (Note that k is odd and hence these coordinates
are integral.) We would like to have the following distances.

d(sy0,P,n) = 0,
d(syo, ) = 0,
d(sto,pls) = 1, ifi# 1,k,
d(S;kq,p;k) = 0.

These equations do indeed hold since,

(2—(1_k)>2—(1_k)2+1—k = 4—2(1—k)+(1_k)2—(l_k)2+1—k

2 4 4 4
= k+3,

(1—(1;k)> —(1_4k)2+1—k = 1-(1—-k)+(1—k)
=1

(2—0)° ; (k+3)— (k—1).
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[t can now be seen that requirement 16 is satisfied. (All the other required
distances follow immediately from the construction.) See Figure 13.

We have shown how to construct requests for each connected component
of G’ separately. We now place these blocks of requests for each connected
component one above the other. We do this in such a way that the difference
between the radial coordinates of requests corresponding to different compo-
nents is at least an? for some sufficiently large constant . This will ensure
that if the head travels between two requests corresponding to two different
components then it crosses # = 0 at least twice. For each request s/, we
place the request s, so that it has the same radial coordinate as s/, and has
angular coordinate (1 — k)/2. The request s/, is connected to the request s,
by a subchain of requests spaced one unit apart in the angular direction and
with the same radial coordinate as s, and s,. Similarly for each request p|
we place the request p, so that it has the same radial coordinate as p! and
has angular coordinate 2. (See Figure 13.) Note that we have now defined
the exact positions of the columns S and P. Property 3 is now satisfied.
The total number of requests used is O(n?) and the dimensions of the area of
disk used are O(n) x O(n?). (The angular dimension is O(n) and the radial
dimension is O(n?).)

Enforcing Properties 4, 5, and 6

We next describe the requests in columns () and R and the additional requests
that must be placed between these columns. By Properties 5 and 6 the radial
order of the requests in () and R is determined by the radial order of the
requests in P and S. By renumbering the vertices of G we can set the radial
coordinate of ¢, to be 5i. We can then set the radial coordinate of r,, to
be 5h(i), where h is a permutation on 0,1,2,...,n — 1 defined by the radial
order of the requests in S. Our goal in this part of the construction is to
place a subchain of requests between ¢, and r, so that in any solution that
takes n rotations, this subchain must be serviced in less than one rotation.
This is done for all vertices v in GG. Since h is an arbitrary permutation,
these chains must cross. However, at the crossing points we shall place the
requests so that in an n-rotation schedule, the disk head cannot jump from
one subchain to an overlapping subchain.
We first consider the simple case in which A is the transposition (0,1,2,...,n—

1) = (1,0,2,...,n—1).
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Lemma 17 If h is the above transposition, we can place O(1) requests be-
tween q, and r, for all v so that in an n-rotation schedule each subchain is
serviced in less than 1 rotation. The total number of requests used is O(n)
and the area of disk used has dimensions O(1) x O(n).

Proof: Consider the following sets of requests on the disk.

Ay = {(an)v(1’0)5(Q’O)v(3’0)5(5’4)’(6’5)’(755)}5
Al = {(075)7(1v4)7(273)7(3v2)7(472)7

(See Figure 14.) Now suppose that (3,0) and (5,4) are serviced in different
rotations. Then by the definition of the reachability function, (4,2) must
be serviced in a third rotation. Hence if all the requests in Ay and A; are
serviced in two rotations then (3,0) and (5,4) must be serviced in one of
them and (4, 2) must be serviced in the other. By carrying out similar (but
simpler) arguments on other pairs of requests we must have that if all the
requests in Ag and A; are serviced in two rotations then all the requests in Ag
must be serviced in one of them and all the requests in A; must be serviced
in the other.
Now for vertex v; in G, j # 0,1, we place the requests,

—
Ot
[\

~

—

=
—_

~

—
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(==
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A; ={(0,55),(1,55),(2,54), (3,5), (4,55), (5,57), (6,5), (7,5]) }

on the disk. Suppose that all the requests in |J; A; are serviced in n rotations.
It is clear that all the requests in A; must be serviced in a single rotation
for j # 0,1 and the requests in Ay U A; must be serviced in 2 rotations.
Therefore by the above argument for Ay and A;, the requests in A; must be
serviced in a single rotation for all j, 0 < j < n. O

Corollary 18 If h is an arbitrary permutation, we can place O(n?) requests
between q, and r, for all v so that in an n-rotation schedule each subchain is
serviced in less than 1 rotation. The total number of requests used is O(n?)
and the area of disk used has dimensions O(n?) x O(n).

Proof: By an elementary result in algebra an arbitrary permutation is
the composition of at most n? transpositions of neighboring elements. Hence
we can construct a set of requests corresponding to an arbitrary permutation
by simply concatenating n? structures similar to the one described above.
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The first column of requests of one structure will be identified with the last
column of requests of the previous structure. All of these requests can clearly
be placed in a region with dimensions O(n?) x O(n) and the number of
requests used is O(n3). The entire region can be shifted in the angular
direction so that it lies between columns () and R, whose exact positions can
be determined using the comments below. O

It only remains to add subchains of requests between P and () and be-
tween R and S to complete the enforcement of Properties 4, 5, and 6. It is
easy to see that this can be done and so we omit the details since they are a
little awkward to describe. Once these subchains have been constructed it is
possible to calculate the exact positions for the columns P, (), R and S so
that all the subchains “match up” to form the complete chains.

We have described the reduction in terms of a disk with dimensions
poly(n) x poly(n). In order to obtain a reduction for a disk with dimensions
21 x 1 we simply scale all the coordinates of the requests by an appropriate
amount. This has the effect of scaling the reachability function. Note that
there are poly(n) requests and each request has integral coordinates before
the scaling. This, together with the fact that the disk before the scaling
has polynomial dimensions, implies that each request can be described using
a number of bits that is polynomial in n. Hence the entire input can be
described using a number of bits that is polynomial in n. The reduction is
complete.
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B Figures

Track

Platter

Cylinder

Figure 1: A computer disk.
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HEADSCHEDULE
1 find a min-cost cycle cover C =CM u...uCw®
service short cycles
2 fori=110 2[trnseex | + 1 do
3 if 7 is odd then
4 for j =1to ¢ do
5 CYCLECONNECT (H](i), V}(i))
6 if 7 is even then
7 for j = ¢; down to 1 do
8

CycLeConNecT (H®, V®)

J J

service long cycles
while there exist unserviced long cycles ¢
service cycle ¢ starting at angle 0

Ne}

CYCLECONNECT (H]@ Vj(i))
1 while there exist unserviced cycles in H ]@, alternate between the folloy

2 e Let ¢ be the unserviced cycle in H](Z) which has the
highest centerpoint. Service ¢ starting at angle 0.
e Let ¢ be the unserviced cycle in H]@ which has the
lowest leftpoint. Service ¢ starting at angle .
3 while there exist unserviced cycles in V}(i), alternate between the follow
4 e Let ¢ be the unserviced cycle in V;-(i) which has the
lowest centerpoint. Service c starting at angle 0.
e Let ¢ be the unserviced cycle in V;-(i) which has the

highest leftpoint. Service ¢ starting at angle ir.

ying.

[ing.

Figure 2: The HEADSCHEDULE algorithm.
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R,

Ry Ry

Figure 3: (Left) The reachability function f. (Right) A cycle ¢ € C®, whose

neighboring requests are connected by the virtual trace. The disk is viewed
as a 47 x 1 rectangle T®.

centerpoint
a e

leftpoint

0 o 2w
Figure 4: The leftpoint and centerpoint of a cycle. If the cycle is ser-

viced starting at angle ¢w then the requests are serviced in the order
€7f7g7h7a7b7c7d'
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S (im)

. 700
e | | -
R A
/( o 3£ (im)
(1,) 3
gy
A ————2f(im)
2 _ VZ(_Q
f (i)
0
0 i 2

Figure 5: A set of cycles, each labeled with the group to which it belongs.
For odd « HEADSCHEDULE first services the cycles in Hfl) and then the cycles

in Vl(i), Héi) and Vz(i), etc; for even + HEADSCHEDULE first services cycles in
H{D and then cycles in V9, H{I"D and Vi~V etc.
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Figure 6: CYCLECONNECT services the cycles in Hfi)
c3, since ¢; has the highest centerpoint and ¢, has the lowest leftpoint. To
illustrate Lemma 6, (3 is serviced last on cycle ¢; and « is serviced first on cs.
Request « is reachable from leftpoint(c;). CYCLECONNECT therefore uses

i/2 rotations to travel from ¢; to cs.

in the order ¢y, co,

centerpoint(c)

A%

Figure 7: The two dashed curves represent functions h; and hs, which define
the upper and lower boundaries of the reachability cone rooted at the point
7. If centerpoint(c) is in the reachability cone then «., the first request on ¢
after centerpoint(c), is also in the cone.
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rotation 3
-~ rotation 2

— rotation 1

00 2T 00 2w

Figure 8: (Left) An optimal path P with m = 3 rotations. (Right) Path @
with 3 rotations which preserves monotonicity and is realizable by the disk
head.

Figure 9: The shaded triangle is the region under the point (¢, ).

Figure 10: (Left) R, is outside the reachability cone rooted at (¢;, ;). (Right)
R; is inside the reachability cone rooted at (¢;, ;).
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P Q R S

Figure 11: The chains of requests.

0

uout
O
1 3 5 7 1 3 5 7
Uin Uin Uin Uin Uin% kvin
O O O O O O O O
O O O O O O
2 4 6 2 4 6

U U U, U, U, U

out out out out out out

Figure 12: (Left) A sawtooth. (Right) A circular sawtooth.
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S 0 P

Figure 13: The placing of requests for a circular sawtooth with k = 5. Here
sty =1(0,2), 5,2 = (—2,2), plp = (1,1), ppr = (2,1) etc.

Figure 14: Placing requests to enforce a permutation.
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