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Optimization Problems

+ Problem:

- A problem is a function (relation) from a set I of
instances of the problem to a set S of solutions.

cp:I—>S

- Decision Problem:

- Problem with S = {TRUE, FALSE}

+ Optimization Problem:

- Problem with a mapping from set S of solutions to a
positive rational number called the solution value

cpI—=5S—-m(T)S)

1/12/10 COT 6936 2

Optimization Versions of NP-Complete Problems

TSP

CLIQUE

Vertex Cover & Set Cover
Hamiltonian Cycle
Hamiltonian Path

SAT & 3SAT

3-D matching
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Optimization Versions of NP-Complete Problems

+ Computing a minimum TSP four is NP-hard
(every problem in NP can be reduced fo it in
polynomial time)

*+ BUT, it is not known to be in NP

+ If P is NP-Complete, then its optimization
version is NP-hard (i.e., it is at least as hard
as any problem in NP, but may not be in NP)
- Proof by contradiction!
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Performance Ratio

+ Approximation Algorithm A
- A(T)
+ Optimal Solution
- OPT(T)
- Performance Ratio on input I for
minimization problems
- R,(T) = max {A(I)/OPT(I), OPT(I)/A(L)}
* Performance Ratio of approximation
algorithm A
- R, =inf {r> 1| R,(I) < r, for all instances}
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Metric Space

+ It generalizes concept of Euclidean space

- Set with a distance function (metric) defined
on its elements
- D: M X M = R (assigns a real nhumber to
distance between every pair of elements from
the metric space M)
*D(xy)=0iffx=y
+ D(xy)20
* D(x,y) = D(y.x)
- D(x,y) + D(y,z) > D(x,z)
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Examples of metric spaces

+ Euclidean distance
- L, metrics
* Graph distances

- Distance between elements is the length of the
shortest path in the graph
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TSP

* TSP in general graphs cannot be
approximated to within a constant (Why?)
- What is the approach?

+ Prove that it is hard to approximate!
* TSP in general metric spaces holds promisel!
- NN heuristic [Rosenkrantz, et al. 77]

+ NN(I) < 5 (ceil(log,n) + 1) OPT(T)
- 2-OPT, 3-OPT, k-OPT, Lin-Kernighan Heuristic
* Can TSP in general metric spaces be
approximated to within a constant?
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TSP in Euclidean Space

* TSP in Euclidean space can be approximated.
- MST Doubling (DMST) Algorithm

+ Compute a MST, M

+ Double the MST to create a tour, T,

+ Modify the tour to get a TSP tour, T
- Theorem: DMST is a 2-approximation algorithm

for Euclidean metrics, i.e., DMST(I) < 2 OPT(I)

- Analysis:

+ L(T) < L(Ty) = 2L(M) < 2L(Topr)
- Is the analysis tight?
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Example of MST Doubling Algorithm
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Example of Christofides Algorithm

A A
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TSP in Euclidean Metric
* Improved algorithms

- MM(T) < 3/2 OPT(T) [Christofides]
+ Christofides observed that DMST has 4 stages:
- Find MST

- Double all edges
- Find Eulerian tour of resulting graph
- Convert Eulerian tour into TSP tour
+ He modified step 2 to the following
- Add a matching of odd degree vertices

- PTAS(I) < (1+ € ) OPT(T) [Arora]
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TSP Approximation Algorithm

Theorem: The MST doubling algorithm is a
2-approximation algorithm for inputs from
any mefric space.
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Vertex Cover

* Find the smallest set of vertices that are
adjacent to all edges in the graph.

+ Approximation Algorithm:
- Initialize vertex cover C = empty set
- while (an edge remains in the graph)
+ Choose arbitrary edge e = (u,v)
+ Add u and v fo vertex cover C
+ Remove all edges incident onuor v

- Output set C
+ Analysis: |C| < 2|Cpprl [Is this tight?]
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Greedy Vertex Cover

+ Algorithm
- While graph has at least one edge
+ Pick vertex v of highest degree and add to VC
+ Remove all edges incident on v
* Analysis
- |VC| < log n |VCqprl [Is this tight?]
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Greedy Vertex Cover: Analysis

- Let C be optimal vertex cover and K = |C]|

+ Tteration i: vertex of maximum degree d is
processed resulting in graph G,

* Let e(G) = # edges in G. So e(G)) = e(6,4) - d;
+ Observation: Sum of degrees of vertices in
any cover is 2 e(G). Thus their average
degree is > e(G, ;)/K. And,

© 2ydi2 Zye(6 )/K2e(6)- 2 d

* Thus |Z . d; > e(6)/2
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Greedy Vertex Cover: Analysis

+ After K vertices are removed, half the edges
of G are covered. After K logn vertices are
removed, all edges of G will be covered.

* Performance ratio < log n

+ Is the analysis tight?

- Goal is to find graph such that after K rounds,
we are left with half the edges uncovered

- Make the graph recursive so that we need log n
such rounds before all edges are covered.
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Complements and Approx Algorithms

+ Complement of a clique subgraph is an
independent set (i.e., a subgraph with no
edges connecting any of the vertices)

+ If a vertex cover is removed (including all
incident edges), what remains?

-

* If the minimum vertex cover problem can be
2-approximated, what about the maximum
clique or maximum independent set?

-??
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Edge Colorings Example
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Edge Colorings

* Theorem: Every graph can be edge colored
with at most A+l colors, where A is the
maximum degree of the graph.

* Theorem: No graph can be edge colored with
less than A colors.

* Theorem: It is NP-complete to decide
whether a graph can be edge colored with A
colors [Holyer, 1981]

- Thus it can be approximated to within an additive
constant. Can't do better than that!
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Some NP-Complete Number Problems

* Input: set S of nintegers
+ Question 1: Is there a subset of S that adds
up to 0? SUBSET-SUM
- Example: {—7,-3,-2,5, 8}

* Input: set S of nintegers, and integer B

+ Question 2: Is there a subset of S that adds
up to B (part of input)?
- Example

S ={267,493,869,961,1000,1153,1246,1598,
1766,1922} and B = 5842
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SUBSET-SUM




More NP-Complete Number Problems

* Input: set S of nintegers

* Question 3: Is there a partition of S into
two subsets each with the same sum?

- Example: {—7,-3,-2,1, 5, 8} PARTITION
* Input: set S of 3n integers

* Question 4: Is there a partition of S into
|S|/3 subsets each of size 3 and each of
which adds up to the same value?

- Strongly NP-Complete! 3-PARTITION
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Load Balancing

* Input: m identical machines; n jobs, job j has
processing fime t;.
- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.
* Def: The load of machine i is L= sum of
processing times of assigned jobs.
+ Def: The makespan is the maximum load on
any machine L = maxL.
* Load balancing: Assign each job to a machine

to minimize makespan. NP-Complete problem

112110 COT 6936 | Example from Kieinberg & Tordos: 3
 Slides inspired by Kevin Wayne

Example

Load on Machine 1

Machine 1 [ (S AR T
Machine 2 [EEINN] INCT
Machine 3 [ERERENTIN] T NNENN

Makespan
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Greedy Algorithm

+ Algorithm:
- for jobs 1 to n (in any order)
+ Assign job j to machine with least load

+ Observations:

1. Lopr 2 max {fy, .., 1}

2. Lopr 2 AVG(T)

3. If n>m, then Lopr 2 2t
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Analysis

* Theorem: Greedy Algorithm is 2-approximate

* Proof:

- Let i be machine with maximum load L;. Let j be
last job scheduled on it.

- Before j was assigned, machine i had least load.

- ThusL; - ;< Ly, forall kin [1.m]

- 1< Lopr

- Li<2lopr

+ Is the analysis tight?
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Analysis is tight!
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Longest Processing Time (LPT) Algorithm

+ Algorithm:

- for jobs 1 to n (in decreasing order of time)
+ Assign job j to machine with least load

* Proof:

- Let i be machine with maximum load L;. Let j be
last job scheduled on it.

- The last job is the shortest and is at most Lypy/2

- Thus L; is at most (3/2)Lgpr [if n>m]
+ Is the analysis tight?
- Nol! (4/3)-approximation exists [Graham, 1969]
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Fractional Knapsack Problem

+ Burglar's choices:

n bags of valuables: x;, x,, ..., X,

Unit Value: vy, v, .., v,

Max number of units in bag: q, 95, .., q,

Weight per unit: wy, w,, ..., w,

Getaway Truck has a weight limit of B.

Burglar can take “fractional” amount of any item.
How can burglar maximize value of the loot?

+ Greedy Algorithm works!

Pick maximum quantity of highest value per weight
item. Continue until weight limit B is reached.
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0-1 Knapsack Problem

* Burglar's choices:
Items: xq, X5, ..., X,
Value: vy, vy, .., v,
Weight: wy, w,, ..., w,
Getaway Truck has a weight limit of B.
"Fractional” amount of items NOT allowed
How can burglar maximize value of the loot?
* Greedy Algorithm does not work! Why?
* Need dynamic programming!
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0-1 Knapsack Problem: Example

1 1 1
2 6 2
B=12 3 18 5
4 22 6
5 28 7
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0-1 Knapsack Problem

+ Subproblems?

- V[j, L]1= Optimal solution for knapsack problem assumin
truck weight limit L & choice of items from set {1,2,.., \3.

- V[n, B] = Optimal solution for original problem

- V[1, L] = easy to compute for all values of L.

* Recurrence Relation? [Either x; included or not]

- V[j, L1=max { V[j-1,L] , v;+V[j-1, L-w;]}

+ Table of solutions?

- V[l.n, 1.B]

* Ordering of subproblems?

- Row-wise
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Another NP-Complete Number Problem

Input: set S of n items each with values {v;,
..,Vp} and weights {w,..,w,}; Knapsack with
weight limit B and value V

+ Question: Is there a choice of items from S

whose weights add up to at most B and whose
value adds up to at least V?
KNAPSACK
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Knapsack Problem

* The 0-1 Knapsack problem is NP-Complete.

* The 0-1 Knapsack problem can be solved
exactly in O(nB) time.

+ Does this mean 2 = 72? What is going on
here?

* What we have here is a pseudo-polynomial
time algorithm. Why?
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Knapsack: Approximations

* Greedy Algorithm is 2-approximate

- Sort items by value/weight

- Greedily add items to knapsack if it does not
exceed the weight limit

* Improved algorithm is (1 + 1/k)-approximate

[Sahni, 1975]

- Time complexity is polynomial in n, logV, and logB

- Time complexity is exponential in k

- This is a “approximation scheme"

- Implies cannot get to within an additive constant!
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Clustering

- Set of points {p;,...p,} in R¢

* Typical data mining problem is to find k
clusters in this data
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Clustering

* Requires a distance function
- Euclidean distance (L, distance) and L, metrics
- Mahalanobis distance
- Pearson Correlation Coefficient
- General metric distance
* Requires an objective function to optimize
- Maximum distance to a center
- Sum of distances to a center
- Median of distance to a center

+ Can any point be center? (finite vs infinite)
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Clustering

+ Set of points S = {p;,..,p,} in R¢
+ Find a set of k centers such that the
maximum of the distance of a point to its
closest center is minimized.
* Min; Max; d(p;,C)
° d(puc) = Mincj inC d‘ST(puCJ) e v
- -

*
-
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Well-known clustering techniques

+ Algorithms
- K-Means
- Hierarchical clustering
- Clustering using MSTs
- Greedy algorithm

+ Put first center at best possible location for single
center; then keep adding centers to reduce covering
radius each fime by as much as possible.

+ Disadvantages

- All three are heuristic algorithms (solutions not
optimal, no provable approximation factor)
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Clustering: Approximation Algorithm

+ Improved Greedy algorithm:

- Repeatedly choose next center to be site farthest from
any existing center. Choose first center is arbitrarily.

. ~
R d * »
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.
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Clustering: Approximation Analysis
+ Analysis:
- Let r = radius of largest greedy cluster
- Let ropr = radius of largest optimal cluster

- If distance from optimal center to every site is < rgpr,
then distance from any site to some optimal center is <
ropr- Take ball of radius ropraround every greedy center.
All optimal centers are covered:;

- Ball of radius 2rgpr around each greedy center will cover
every site.

- Thus r< 2 rgpr.
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Alternative (Corrected) Proof

+ Improved Greedy algorithm:

- Repeatedly choose next center to be site farthest from
any existing center

* Analysis:
- Let r = distance between last 2 greedy centers & repr =
radius of largest cluster in optimal clustering

- Let r> 2ropr. Take ball of radius r around every greedy
center. Exactly one optimal center in each ball (?);

- Pair optimal and greedy centers (c;,c*).

- Let s be any site and ¢* be its nearest optimal center
- d(s, C) ¢« d(s, ¢;) ¢ d(s, ¢*) + d(c*, c;) <« 2r(C*).

- Thus r(C) < 2r(C*), i.e., r < 2ropr
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Observation

* Analysis compared r with rop+ without
knowing what the optimal clustering looked
like!
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Bin Packing

* Given an infinite number of unit capacity bins
- Given finite set of items with rational sizes

* Place items into minimum number of bins such
that each bin is never filled beyond capacity

* BIN-PACKING is NP-Complete

- Reduction from 3-PARTITION
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Bin Packing: Approx Algorithm
* First-Fit:
- place item in lowest numbered bin that can
accommodate item
- FF(I)< 2 OPT(T)
+ FF(I) < 17/10 OPT(I) + 2
* First-Fit Decreasing:

- Sort items in decreasing size and then do first-
fit placement
- FFD(T) = 11/9 OPT(I) + 4
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Bin Packing: Approx Algorithm

* Connection to Partition
- Hard even when you have only 2 bins

- Cannot approximate to within (3/2)- € unless
P=NP

- Can get (1+ € )approximation if OPT > 2/ ¢
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Set Cover
* Greedy Algorithm

- While there are uncovered items
+ Find set with most uncovered items and add to cover

* Analysis
- Approximation Ratio = log n
- It is tight. In example below, it will pick 5 sets
instead of 2.
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Approximability of NP-Hard Problems
1+e Euclidean TSP (Arora)
15 Euclidean TSP (Christofides)
2 Vertex Cover
c Coloring
logn Set Cover
log?n
/n
ne Independent Set, Clique
n General TSP
1/12/10 COT 6936 48

16



