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Gaussian Elimination

* Solving a system of simultaneous equations

Xq -2X3 =2
Xy + X3 8 g O(n3) algorithm
X1+ X; -Xx4 =4
X, +3X3+ X4 =D
X4 -2X3 =2
Xy + X3 =3

Xy + 2X3- X4 =2

Xy + 3X3 + X4 = 5
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Linear Programming

+ Want more than solving simultaneous
equations

+ We have an objective function to optimize
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Chocolate Shop [DPV book]

» 2 kinds of chocolate

- milk [Profit: $1 per box] [Demand: 200]

- Deluxe [Profit: $6 per box] [Demand: 300]
* Production capacity: 400 boxes

* Goal: maximize profit

- Maximize x; + 6x, subject to constraints:

+ x; ¢ 200
+ X, < 300
© X; + X, < 400
* Xy, X, 20
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Diet Problem
* Food type: Fi..Fr
* Nutrients: N;....N,

* Min daily requirement of nutrients: c;,....c,
* Price per unit of food: by,...bm
* Nutrient N; in food F;: a;
* Problem: Supply daily nutrients at minimum
cost

- Min by,

c Ziagx2c forl<jen

+ %20
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Transportation Problem

+ Ports (Production Units): Py Pr
+ Port/production capacity: S-S
* Markets (Consumption Units): M,,.. M,
* Min daily market need: (P

+ Cost of transporting to M, from port P;: a;,

« Problem: Meet market need at minimum
transportation cost

Multicommodity versions
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Assignment Problem

+ Workers: by,...,b,

+ Jobs: gy,...9,

+ Value of assigning person b; to job g,: ay

* Problem: Choose job assignment with
maximum value

The General Assignment Problem generalizes
the Bipartite Matching Problem
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Bandwidth Allocation Problem

Figure 7.3 A communications network between threo users A, B, and C'. Bandwidths are
shown.
. Need: VN + Revenue:
A—Bs 2 units " A — B pays $3 per unit
B—C52 units o) B — C pays $2 per unit
C— A2 units 7 N C — A pays $4 per unit
« Connections: < ‘
Short route 2 5\ %
Long route = ; : .
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Bandwidth Allocation Problem

* Maximize revenue by allocating bandwidth to
connections along two routes without
exceeding bandwidth capacities

* Max 3(Xap+Xap) + 2(XpctXpc) + 4(XactXac) ST
Xap*+ Xag *+ Xpc*+ Xgc ¢ 10

Xapg* Xag + Xac+ Xac €12

Xgc* Xpc * Xac* Xac ¢ 8

Xag* Xpc * Xac £ 6; Xap+ Xap 22, Xpe+ Xpc 22
Xap + Xpe *+ Xac ¢ 13; Xac*+ Xac 22
Xag + Xpe + Xpc ¢ 11; & all honneg constraints
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Standard LP

+ Maximize 2 CyXk [Objective Function]
Subject to ZayXy ¢ b; [Constraints]
and Xy 2 0 [Nonnegativity Constraints]

+ Matrix formulation of LP

Maximize cx
Subject to Ax<b
and x20
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Converting to standard form
* Min -2x; + 3x, Subject to

X1+ X,=7

X1 - 2%, ¢4

%20

* Max 2x, - 3x, Subject to
X+ X3¢ 7

-X1- Xy ¢ -7

- X -2%,¢ 4

- %20
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Converting to standard form

* Max 2x, - 3x, Subject to

X1+ X7

-Xy - Xy ¢ -7

Xy = 2X%, <4

x:20

* Max 2x; - 3(x3- x4) Subject to
X1+ X3-X4¢7

Xy = (X3-X4) ¢ -7

X1 = 2(X3-X%4) < 4

X; X3, %420
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Converting to Standard form

* Max 2x; - 3x,+ 3x3 Subject to
Xy +Xo=X3¢7
-Xq = X+ X3¢ -7
X1 = 2X, - 2X3¢ 4
X; Xz, X320
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Slack Form

+ Max 2x; - 3x,+ 3x3 Subject to
X1+ Xo=X3¢7
-X1 = Xp+ X3¢ -7
Xy = 2X,- 2X3< 4
X; Xz, X320
* Max 2x; - 3x, + 3x3 Subject to
X1+ Xo= X3+ X4=7
“Xy = Xp+ X3+ X5 = -7
Xy = 2X,= 2X3+ X, = 4
X1, Xp, X3, Xg, X5, X620
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Duality
« Max cTx [Primal]
Subject to Ax<b
and x > 0
* Miny™b [Dual]

Subject to yTA > ¢
andy >0
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Understanding Duality

* Maximize x, + 6x, subject to constraints:

P h vy o How were
* X ¢ 300 @ mutipliers
© X + X, < 400 (3) determined?
* Xy, X520 o

+ (100,300) is feasible; vaite = 1900. Optimum?
+ Adding 1 times (1) + 6 times (2) gives us

+ X + 6x, < 2000
*+ Adding 1 times (3) + 5 times (2) gives us

+ X; + 6x, < 1900

+ "Certificate of Optimality” for solution (100,300)
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Understanding Duality

+ Maximize x, + 6x, subject to:

* Xy <200 (y)

X, ¢ 300 (y2) [(100,300)]
* Xg + X, <400 (vs)
© Xy, X 20

- Different choice of multipliers gives us
different bounds. We want smallest bound.

* Minimize 200y, + 300y, + 400y; subject to:

*y1 tyz 2l (x)
Y2+Y326 (x2) [(0,5.1)]
* Y1 Y220
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Duality Principle

+ Primal feasible values < dual feasible values
o |Max primal value = min dual value|

* Duality Theorem: If a linear program has a
bounded optimal value then so does its dual
and the two optimal values are equal.
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Visualizing Duality

* Shortest Path Problem
- Build a physical model and between each pair of
vertices attach a string of appropriate length
- To find shortest path from s fo t, hold the two
vertices and pull them apart as much as possible
without breaking the strings
- This is exactly what a dual LP solves!
* Max x.-x;
+ subject to [x,-x,| < w,, for every edge (u.v)
- The taut strings correspond to the shortest
path, i.e., they have no slack
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Simplex Algorithm

* Start at v, any vertex of feasible region
+ while (there is neighbor v' of v with better
objective value) do
setv=V
* Report v as optimal point and its value as
optimal value

* What is a
- Vertex?, neighbor?
+ Start vertex? How to pick next neighbor?
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Simplex Algorithm: Example

i.e., some inequalities

Figure 7.12 A polyhedron defined by seven inequalitios. _satisfied as equalities
el
D - s max zy + Gy + 132
1137 <20
—— 4,9, r <2
—— ry < 300
ry 43 + x3 < 400
23 + 3y < 600 i
120
r2>0 /
0 ‘I'
Yy Vertex: point where n hyperpianes meet;

Neighbor: vertices sharing n-1 hyperplanes
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Steps of Simplex Algorithm

- In order to find next neighbor from
arbitrary vertex, we do a change of origin
(pivot)

Initial LP: Current vertex: {@),®) (origin),
Objective value: 0,
max 2xy + 5z
B d Move: increase x3.
“ _:.; o N 5) is released, @) becomes tight. Stop at x; = 3.
xy + 2 3 3 New vertex (@), @) has local coordinates (v, v):
ry 0 @
) 5 m=x, mw=3+n-n
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Simplex Algorithm Example

{®,®}
Increase « A
n

{®,@})y

»{O, @}
Increase

g

max 2z + dxp

22y —x2 < 4

(®,®) {©,@) n*2= = 7

422 < 3

E >0
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Simplex Algorithm Example

Initial LP: Current vertex: {@), (8} (origin).

Objective value: 0.

max 2xy + b
24y -z 1 a Move: increase zz. 7
i 420 9 @ @ is released, (3 becomes tight. Stop at x; = 3.
xy +x @ New vertex {@), @)} has local coordinates (yy, v ):
:. 0 @
r n=x, n=3+rn-n
x2 0 ®
Rewritten LP: Current vertex: {{@),3}.

Objective value: 15,
max 15+ Ty — Sy

Mote: increase y;.

nty 7 ! > § 3
S s T @ @ is released, ) becomes tight. Stop at y; = 1.
v 20 &) New vertex {@), @)} has local coordinates (zy, =)
n 0 @
3 33y + 2y, =2 s
ntw <8 ® 1 o+ 2y, =W




Simplex Algorithm Example

Rewritten LP: Current vertex: {4),®}.
Objective value: 15.
max 15+ Ty — Sya
Move: increase y,.

v+ T d _ )
a . a @ is released, (2) becomes tight, Stop at yy = 1.
-2 3
>0 @ New vertex (@, @} has local coordinates (=, =2):
n 0 @
3~ 3y 2y
iy < 3 1 1+ 2 v,
Rewritten LP: Current verte:
) Objective va
max 22— iz -}
1 4 6 a Optimal: all ¢, < 0.
> @ 3 . + . . .
o ) Solve @), (in original LP) to get optimal solution
: 0 @ (z1,22) = (1,4).
in-3s 1 @
1o+ ds 4
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Simplex Algorithm: Degenerate vertices

i.e., some inequalities

Figure 7.12 A polyhodron defined by seven inequalitios. _satisfied as equalities
Y e

| A e ST max xy + 6y + 13x
> 3 i ry < 200
Py - y e 27 < 300
ry 4oyt 100

23 4 3a 600 f @

rn >0 |/ (3

r2 >0 1 @

, = F

i Y Vertex: point where n hyperpianes meet;

Neighbor: vertices sharing n-1 hyperplanes
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Polynomial-time algorithms for LP

+ Simplex is not poly-time in the worst-case
+ Khachiyan's ellipsoid algorithm is a
polynomial-time algorithm
-"LPisin 2"
+ Karmarkar's interior-point algorithm
* Good implementations for LP exist
- Works very well in practice

- More competitive than the poly-time methods
for LP
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Network Flow Problem
* Max X, f(s,v) Subject to

f(e) < c(e) for each edge e

f(uyv) = -f(v,u) for each u,v in set of vertices
2,fluv)=0 for each uin V- {s,t}

f(e)20 for each edge e
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Min-Cost Network Flow Problem
* Min %, a(e)f(e) Subject to

f(e) < c(e) for each edge e

f(u,v) = -f(v,u) for each u,v in set of vertices
2,fluv)=0 for eachuinV - {s,t}
Z,f(sv)=F

f(e)20 for each edge e
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Vertex Cover as an LP?

* For vertex v, create variable x,

- Takes value O if it is not in vertex cover

- Takes value 1 if it is in vertex cover

* For edge (u,v), create constraint x, + x, > 1
* Objective function:  x,

+ Additional constraints: x, ¢ 1

- DOES THIS WORK?

- Doesn't work because x, needs to be from
{0.1}
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Integer Linear Programming

* LP with integral solutions

* NP-hard

+ If Ais a totally unimodular matrix (TUM),
then the LP solution is always integral.

- A TUM is a matrix for which every nonsingular
submatrix has determinant O, +1 or -1.

- A TUM is a matrix for which every nonsingular
submatrix has integral inverse.
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