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Announcements

• Plan for problem sets:

– PS 5 due 11/22 (before Thanksgiving break)
– PS 6 due 12/8
– PS 7: no grade, solutions will be available on 12/13
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Review: hiearchical clustering

Allgomerative clustering:

• Start with N singleton clusters

• At each level merge two clusters
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• Single linkage: D(A,B) = mina∈A,b∈B D(a,b)

• Average linkage: D(A,B) = 1
|A||B|

∑
a∈A

∑
b∈B D(a,b)

• Complete linkage: D(A,B) = maxa∈A,b∈B D(a,b)
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Spectral clustering

• Suppose we have a N ×N distance matrix

• We can represent the data as a graph:

– N vertices,
– edges corresponding to nearest neighbors.
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Random walk model

• Assign weights to edges:

Wij =

{
exp(−β‖xi − xj‖) if xi and xj connected,

0 otherwise

• The weight of a path x1 → x2 → . . . → xn is

W12 ·W23 · · ·Wn−1,n = exp

(
−β

n−1∑
i=1

‖xi − xi+1‖

)
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Spectral clustering: intuition

• The idea behind spectral clustering: imagine a random walk with probability of
step i → j given by the transition matrix P

Pij =
Wij∑
l Wil

.

– If we start within a cluster, we will likely remain within that cluster for a long
time.
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Properties of the random walk

• If we start at i0, where will we end up after t steps?

i1 ∼ Pi0i1 ,

i2 ∼
∑
i1

Pi0i1Pi1i2
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Properties of the random walk

• If we start at i0, where will we end up after t steps?

i1 ∼ Pi0i1 ,

i2 ∼
∑
i1

Pi0i1Pi1i2 =
(
P2
)
i0i2

,

i3 ∼
∑
i2

(
P2
)
i0i2

Pi2i3 =
(
P3
)
i0i3

,

. . .

it ∼
(
Pt
)
i0it

.
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Transition matrix decomposition

• Recall that Pij = Wij/
∑

j Wij.

• Let W be the weight matrix, and D be the diagonal matrix, Dij =
∑

j Wij.
We have

P = D−1W

• We will focus on a symmetric matrix

D−1
2WD−1

2

It can be decomposed using its eigenvectors z1, . . . , zN corresponding to
eigenvalues |λ1| ≥ . . . ≥ |λN |

D−1
2WD−1

2 = λ1z1zT
1 + . . . + λNzNzT

N
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Eigendecomposition

D−1
2WD−1

2 = λ1z1zT
1 + . . . + λNzNzT

N

Eigenvector/value: Az = λz

• The eigenvectors are orthogonal, i.e., zT
i zj = 0 for i 6= j.

• Assume the graph is connected; the random walk then is ergodic–there is
non-zero probability of getting from any xi to any xj (in some number of steps).

• Spectral graph theory: the largest eigenvalue is always λ1 = 1, and |λn| < 1 for
n = 2, . . . , N .

8



Random walk distribution

(D−1
2WD−1

2)t = (D−1
2WD−1

2) · · · (D−1
2WD−1

2) = D
1
2PtD−1

2

• Thus,

Pt = D−1
2

(
D−1

2WD−1
2

)t

D
1
2

= D−1
2
(
λ1z1zT

1 + . . . + λNzNzT
N

)t
D

1
2

= D−1
2
(
λt

1z1zT
1 + . . . + λt

NzNzT
N

)
D

1
2

• Since λ1 = 1, and |λi| ≤ 1, when t →∞ we get

P∞ = D−1
2
(
z1zT

1

)
D

1
2
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Finite number of steps

P∞ = D−1
2
(
z1zT

1

)
D

1
2

• Assuming the graph is ergodic, in the limit the distribution does not depend on
the starting point!

• When t is very large (but finite), we can focus on the largest correction:

Pt ≈ P∞ + D−1
2
(
λ2

2z2zT
2

)
D

1
2

• (z2zT
2 )ij = z2iz2j, so the probability of starting in xi and ending in xj is a little

bit increased if sign(z2i) = sign(z2j), and decreased otherwise.
⇒ Cluster based on the sign of z2i
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Example

Data & Graph, 5-NN
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Example

Data & Graph, 5-NN 2nd eigenvalue (sorted)
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Example

Data & Graph, 5-NN 2nd eigenvalue (sorted) Clustering
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Beyond binary clustering

• When k > 2:

– Let Zi = [z1i, . . . , zki]T .
– Apply k-means clustering on Z1, . . . ,Zk.

Graph, 20-NN Z Clustering
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Parameters of spectral clustering

• Two parameters (in addition to k):

– Neighborhood size (# of nearest neighbors)
– Distance falloff parameter β.

2-NN 5-NN 15-NN
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More examples, from [Ng et al ’01]
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Dimensionality reduction

• The dimensionality of observations is dictated by the number/type of sensors,
and could be quite arbitrary.

• The intrinsic dimensionality is a property of the
generating process⇒ assumption that the data
lie on (or near) a subspace.
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Dimensionality reduction vs. clustering

• Dimensionality reduction and clustering are both about recovering simple
structure that “explains” the data.

– Clustering: discrete explanation (cluster labels)
– Dimensionality reduction: continuous explanation (underlying subspace).

• In both cases, the structure is represented by hidden variables that need to be
recovered.
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Criteria

• Recall clustering objective: minimize distortion within clusters.

• Objective in dimensionality reduction: find k-dim. subspaceM in Rd, and define
a projection x ∈ Rd → x′ ∈M, such that the residual ‖x′ − x‖ is minimized.
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Next time

PCA;
Feature selection.
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