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Announcements

e Plan for problem sets:

— PS 5 due 11/22 (before Thanksgiving break)
— PS 6 due 12/8
— PS 7: no grade, solutions will be available on 12/13



Review: hiearchical clustering
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Allgomerative clustering: 3
4
e Start with NNV singleton clusters .
o At each level merge two clusters 0
7
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e Single linkage: D(A, B) = minacapen D(a,b)
e Average linkage: D(A,B) = mza&l > vep P(a,b)

e Complete linkage: D(A, B) = maxacaben D(a,b)



Spectral clustering

e Suppose we have a N x N distance matrix

e We can represent the data as a graph:

— N vertices,
— edges corresponding to nearest neighbors.
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Random walk model

e Assign weights to edges:

W — exp(—0||x; — x;||) if x; and x; connected,
Y0 otherwise

e The weight of a path x; - X0 — ... = X,, IS

n—1
Wig-Wag---Wy1 = exp <5 Z i — Xi+1|>
i=1



Spectral clustering: intuition

e The idea behind spectral clustering: imagine a random walk with probability of
step ¢ — j given by the transition matrix P

Zz Wi

— If we start within a cluster, we will likely remain within that cluster for a long
time.



Properties of the random walk

e If we start at 7o, where will we end up after t steps?

13 ~~ § P’LQZlPZlZQ
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Properties of the random walk

e If we start at ¢, where will we end up after t steps?
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Transition matrix decomposition

e Recall that P'ij = WZ]/Z; Wayg.

e Let W be the weight matrix, and D be the diagonal matrix, D;; = Zj Wi;.
We have
P =D'Ww

e We will focus on a symmetric matrix
_1 1
D 2WD 2

It can be decomposed using its eigenvectors zi,...,Zy corresponding to
eigenvalues |A\1| > ... > |\n|

N | =

1 T T
D 2WD 2 = M\izz7 +... + ANZNZYy



Eigendecomposition

T T
= ANZ1Z] + ...+ ANZNZY

N | =

1
D 2WD™

Eigenvector/value: Az = \z

e The eigenvectors are orthogonal, i.e., 2! z; = 0 for i # j.

)

e Assume the graph is connected; the random walk then is ergodic—there is
non-zero probability of getting from any x; to any x; (in some number of steps).

e Spectral graph theory: the largest eigenvalue is always A\ = 1, and |A,| < 1 for
n=2,...,NN.



e Since \{ =1,

Random walk distribution

and |\;| <1, when t — oo we get

N |

P~ — D3 (z1z1 ) D



Finite number of steps

N |

P = D~ (zlle) D%

e Assuming the graph is ergodic, in the limit the distribution does not depend on
the starting point!

e When t is very large (but finite), we can focus on the /argest correction:
1

P! ~ P>® + D~ > ()\2z2z2) D2

o (2z273);j = 22i22;, so the probability of starting in x; and ending in x; is a little
bit increased if sign(zs;) = sign(z2;), and decreased otherwise.
= Cluster based on the sign of zy;
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Data & Graph, 5-NN

Example
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Data & Graph, 5-NN

Example

2nd eigenvalue (sorted)
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Example

Data & Graph, 5-NN 2nd eigenvalue (sorted) Clustering
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Beyond binary clustering

e When k£ > 2:

— Let Zz = [Zli7 ceey Z]m']T.

— Apply k-means clustering on Z+, ..., Zy.
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Parameters of spectral clustering

e Two parameters (in addition to k):

— Neighborhood size (# of nearest neighbors)
— Distance falloff parameter 3.

2-NN 5-NN 15-NN
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More examples, from Ng et al '01

threecircles-joined, 3 clusters
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Dimensionality reduction

e The dimensionality of observations is dictated by the number/type of sensors,
and could be quite arbitrary.
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e The intrinsic dimensionality is a property of the .:
generating process = assumption that the data .'.'
lie on (or near) a subspace. oo
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Dimensionality reduction vs. clustering

e Dimensionality reduction and clustering are both about recovering simple
structure that “explains’ the data.

— Clustering: discrete explanation (cluster labels)
— Dimensionality reduction: continuous explanation (underlying subspace).

e In both cases, the structure is represented by hidden variables that need to be
recovered.
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Criteria

e Recall clustering objective: minimize distortion within clusters.

e Objective in dimensionality reduction: find k-dim. subspace M in R<, and define
a projection x € R% — x’ € M, such that the residual ||x’ — x|| is minimized.
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PCA:
Feature selection.

Next time
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