
COT 6936: Topics in Algorithms!

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/COT6936_S12.html
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

Purpose of this class!
•  First course in algorithms is inadequate

preparation for most PhD students
–  Learn standard techniques
–  Solve standard problems
–  Learn basic analysis techniques
– Need to go beyond that!

•  This course
– Model/formalize a problem
–  Leverage existing solutions
–  Create your own solutions

1/9/12 COT 6936 2

Expectations!
•  Attend class
•  Do required reading before class
•  Participate in class discussions
•  Team work; discussion groups
•  Solve practical research problems
•  Make a presentation; write a report

–  need a research component; may implement
•  Write research paper
•  No cell phones, SMS, or email during class

1/9/12 COT 6936 3

1/9/12 COT 6936 4

Evaluation!
•  Exam (1) 20%
•  Quizzes 5%
•  Homework Assignments 15%
•  Semester Project 40%
•  Class Participation 20%

Semester Project & Exam Schedule!
•  Milestones:

–  By Jan 23: Meet with me and discuss project
–  By Jan 30: Send me email with project team

information and topic
–  Feb 20: Short presentation giving intro to

project, problem definition, notation, and
background

– March 5: Take-home Exam
–  April 16, 23: Final presentation of project
–  April 24: Written report on project

1/9/12 COT 6936 5

1/9/12 COT 6936 6

Why should I care about Algorithms?!
Cartoon from Intractability by Garey and Johnson!

1/9/12 COT 6936 7

Why are theoretical results useful? !

Cartoon from Intractability by Garey and Johnson!

1/9/12 COT 6936 8

Why are theoretical results useful? !

Cartoon from Intractability by Garey and Johnson!

What if efficient algorithms don’t exist!
•  Find good approximation algorithms

– Quality of the solution is guaranteed
•  Find good heuristic algorithms
•  Understand nature of inputs in practice
•  Perform many experiments after

implementing

1/9/12 COT 6936 9

1/9/12 COT 6936 10

If you like Algorithms, nothing to worry about!!

Classical (Theoretical) Algorithmic Model!
•  Input-output description provided
•  Input provided & stored in memory
•  Output computed & stored or output immediately
•  Entire program stored in memory
•  Algebraic Computation-Tree Model (Variants:

indirection, floor function, square root)
•  Space (?) and time (?) efficiency
•  Deterministic and Sequential algorithms
•  Worst-case analysis
•  No other factors to consider

1/9/12 COT 6936 11

Find a “good” student!
•  Director of SCIS says to you: “Find me a

good CS student.”
•  You ask: “What do you mean by good?”
•  Director says: “S/he must be at least as

good as at least half of our current
students.”

1/9/12 COT 6936 12

Naïve Solution!
•  Solution 1

–  Email (or contact or inspect) N/2 + 1 students
and pick best among them

–  Too inefficient
•  Solution 2

–  Pick a random student
– May be wrong about ½ the time

•  Solution 3
–  Pick r random students and pick best among them

1/9/12 COT 6936 13

Solution 3!
•  Prob of failure: ½
•  Prob of failure: (1/2)r

1/9/12 COT 6936 14

Randomized algorithms!
•  Useful when you can tolerate failure
•  2 kinds of randomized algorithms

–  Always fast, sometimes wrong (Monte Carlo)
–  Always correct, sometimes slow (Las Vegas)

•  Complexity classes: RP, BPP, ZPP, …
•  Focus of study

–  Design
–  Analysis

•  Time, Failure probability, Performance, Tradeoffs

1/9/12 COT 6936 15

Applications of Randomized Algorithms!
•  Contention Resolution: network protocol,

resource sharing
•  Hashing
•  Storage: multi-level storage management
•  Packet Routing
•  Load Balancing

1/9/12 COT 6936 16

Facility Location!
•  Given: Location of all fire-stations in Miami
•  Output: Optimal location of next fire-station
•  Strategy: find largest empty region

1/9/12 COT 6936 17

Achieving Height Diversity!
•  Given: Heights of all students in class
•  Problem:

– Want to achieve diversity in heights
–  Allowed to add a student. How to pick?

•  Approach:
– Minimize the largest empty height range

•  Solution:
–  Find biggest empty height range and pick student

in that range

1/9/12 COT 6936 18

Achieving Height Diversity: a variant!
•  Given: Heights of all students in class
•  Problem:

– Want to achieve diversity in heights
–  Allowed to remove a student. How to pick?

•  Approach:
– Maximize the smallest empty height range

•  Solution:
–  Find smallest empty height range and pick one of

two students

1/9/12 COT 6936 19

Heights of Students: What we know!
•  One problem is harder than the other!
•  Which one and why? Homework!
•  One has a lower bound!

–  Relationship to EUP?
•  The other can be solved faster, but with a

different/stronger computational model!

1/9/12 COT 6936 20

Updating a Binary Counter!
•  How many bits are changed when a binary

number is incremented?
– Worst-case?
–  Average-case?
–  Amortized analysis? Average cost over a worst-

case sequence of operations.

1/9/12 COT 6936 21

Binary Counter: What we know!
•  Worst case per increment = O(# bits)
•  Average case per increment = O(# bits)
•  Amortized complexity = ??

1/9/12 COT 6936 22

Other Algorithmic Models!
•  Practical problems

– Making spot decisions: ON-LINE Algorithms
• Often randomized
•  Use current state
•  Sophisticated: use past history

– Not having enough memory or computing power:
STREAMING Algorithms

1/9/12 COT 6936 23

Practical Algorithmic Models!
•  Sequential Algorithms

–  Worst-case / average-case analysis
–  Amortized Analysis

•  Parallel Algorithms
•  On-line Algorithms
•  Randomized Algorithms
•  Streaming Algorithms
•  External Memory Algorithms
•  Limited space/time/power Algorithms
•  Making use of cache: Cache-aware Algorithms

1/9/12 COT 6936 24

Experimental Algorithms!
•  How to do good experiments in practice?

–  Testing for correctness
–  Testing for performance

• Modeling inputs in practice
•  Trying different input distributions
• Optimizing performance for special input distributions

1/9/12 COT 6936 25

Additional Topics!
•  Approximation Algorithms
•  Computational Geometry
•  Computational Biology

–  String Algorithms
•  Computational Finance
•  Combinatorial Optimization
•  Algorithmic Game Theory
•  Heuristic Algorithms
•  Problem Modeling and Transformations

1/9/12 COT 6936 26

Paging Algorithms!
Here are 3 well-known paging algorithms
•  Least Recently Used (LRU): evict item whose

most recent request was furthest in the past
•  First-in, First-out (FIFO): evict item that

was brought in furthest in the past
•  Least Frequently Used (LFU): evict item that

has been requested least often
Which ones are good algorithms and why?
What is an optimal algorithm?

1/9/12 COT 6936 27

Drunken sailors and cabins!
•  A ship arrives at a port. 40 sailors go ashore

for revelry. They return to the ship rather
inebriated. Being unable to remember their
cabin location, they find a random unoccupied
cabin to sleep the night. How many sailors
are expected to sleep in their own cabins?

•  Variants? Generalizations?

1/9/12 COT 6936 28

Homework #1 – is here! !
•  Achieving diversity in heights:

–  Largest empty range problem
–  Smallest empty range problem
– Which is harder and why?

•  Binary Counter
•  2SAT
•  Drunken Sailors problem

– How many sailors will sleep in their own cabins?
•  ACM Programming Contest Problems

1/9/12 COT 6936 29

NP-Completeness!
•  Computers and Intractability: A Guide to the

theory of NP-Completeness, by Garey and
Johnson
–  Compendium (100 pages) of NP-Complete and

related problems

1/9/12 COT 6936 30

1/9/12 COT 6936 31

Polynomial-time computations!
•  An algorithm has (worst-case) time

complexity O(T(n)) if it runs in time at most
cT(n) for some c > 0 and for every input of
length n. [Time complexity ≈ worst-case.]

•  An algorithm is a polynomial-time algorithm if
its (worst-case) time complexity is O(p(n)),
where p(n) is some polynomial in n.
[Polynomial in what?]

•  Composition of polynomials is a polynomial.
[What are the implications?]

1/9/12 COT 6936 32

The class P
•  A problem is in P if there exists a

polynomial-time algorithm for the problem.
[P is therefore a class of problems, not
algorithms.]

•  Examples of problems in P
–  DFS: Linear-time algorithm exists
–  Sorting: O(n log n)-time algorithm exists
–  Bubble Sort: Quadratic-time algorithm O(n2)
–  APSP: Cubic-time algorithm O(n3)

1/9/12 COT 6936 33

The class NP
•  A problem is in NP if there exists a non-

deterministic polynomial-time algorithm that
solves the problem.

•  [Alternative definition] A problem is in NP if
there exists a (deterministic) polynomial-
time algorithm that verifies a solution to the
problem.

•  All problems in P are in NP. [The converse is
the big deal!]

1/9/12 COT 6936 34

TSP: Traveling Salesperson Problem!
•  Input:

–  Weighted graph, G
–  Length bound, B

•  Output:
–  Is there a TSP tour in G of length at most B?

•  Is TSP in NP?
–  YES. Easy to verify a given solution.

•  Is TSP in P?
–  OPEN!
–  One of the greatest unsolved problems of this century!
–  Same as asking: Is P = NP?

1/9/12 COT 6936 35

So, what is NP-Complete?!
• NP-Complete problems are the “hardest”

problems in NP.
•  We need to formalize the notion of
“hardest”.

1/9/12 COT 6936 36

Terminology !
•  Problem:

–  An abstract problem is a function (relation) from a set I
of instances of the problem to a set S of solutions.

p: I → S

–  An instance of a problem p is obtained by assigning values
to the parameters of the abstract problem.

–  Thus, describing set of all instances (i.e., possible inputs)
and the set of corresponding outputs defines a problem.

•  Algorithm:
–  An algorithm that solves problem p must give correct

solutions to all instances of the problem.
•  Polynomial-time algorithm:

1/9/12 COT 6936 37

Terminology (Cont’d)!
•  Input Length:

–  length of an encoding of an instance of the problem.
–  Time and space complexities are written in terms of it.

•  Worst-case time/space complexity of an algorithm
–  Maximum time/space required by algorithm on any input of length n.

•  Worst-case time/space complexity of a problem
–  UPPER BOUND: worst-case time complexity of best existing

algorithm that solves the problem.
–  LOWER BOUND: (provable) worst-case time complexity of best

algorithm (need not exist) that could solve the problem.
–  LOWER BOUND ≤ UPPER BOUND

•  Complexity Class P :
–  Set of all problems p for which polynomial-time algorithms exist

1/9/12 COT 6936 38

Terminology (Cont’d)!
•  Decision Problems:

–  Problems for which the solution set is {yes, no}
–  Example: Does a given graph have an odd cycle?
–  Example: Does a given weighted graph have a TSP tour of length at most B?

•  Complement of a decision problem:
–  Problems for which the solution is “complemented”.
–  Example: Does a given graph NOT have an odd cycle?
–  Example: Is every TSP tour of a given weighted graph of length > B?

•  Optimization Problems:
–  Problems where one is maximizing/minimizing an objective function.
–  Example: Given a weighted graph, find a MST.
–  Example: Given a weighted graph, find an optimal TSP tour.

•  Verification Algorithms:
–  Given a problem instance i and a certificate s, is s a solution for instance i?

1/9/12 COT 6936 39

Terminology (Cont’d)!

•  Complexity Class P :
–  Set of all problems p for which polynomial-time

algorithms exist.
•  Complexity Class NP :

–  Set of all problems p for which polynomial-time
verification algorithms exist.

•  Complexity Class co-NP :
–  Set of all problems p for which polynomial-time

verification algorithms exist for their
complements, i.e., their complements are in NP.

1/9/12 COT 6936 40

Terminology (Cont’d)!
•  Reductions: p1 → p2

–  A problem p1 is reducible to p2, if there exists an
algorithm R that takes an instance i1 of p1 and outputs an
instance i2 of p2, with the constraint that the solution for
i1 is YES if and only if the solution for i2 is YES.

–  Thus, R converts YES (NO) instances of p1 to YES (NO)
instances of p2.

•  Polynomial-time reductions: p1 p2
–  Reductions that run in polynomial time.

•  If p1 p2, then
– If p2 is easy, then so is p1. p2 ∈ P ⇒ p1 ∈ P
– If p1 is hard, then so is p2. p1 ∉ P ⇒ p2 ∉ P

!→!P

!→!P

1/9/12 COT 6936 41

What are NP-Complete problems?!
•  These are the hardest problems in NP.
•  A problem p is NP-Complete if

–  there is a polynomial-time reduction from every
problem in NP to p.

–  p ∈ NP
•  How to prove that a problem is NP-Complete?

•  Cook’s Theorem: [1972]
– The SAT problem is NP-Complete.

Steve Cook, Richard Karp, Leonid Levin

1/9/12 COT 6936 42

NP-Complete vs NP-Hard !
•  A problem p is NP-Complete if

–  there is a polynomial-time reduction from every
problem in NP to p.

–  p ∈ NP
•  A problem p is NP-Hard if

–  there is a polynomial-time reduction from every
problem in NP to p.

•  Remember: to prove problem p is NP-Complete
you have to reduce a NP-Complete problem to p.

1/9/12 COT 6936 43

The SAT Problem: an example!
•  Consider the boolean expression:

 C = (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (a ∨ ¬d ∨ ¬c)
•  Is C satisfiable? [Does there exist a True/False

assignments to the boolean variables a, b, c, d, e,
such that C is True?]

•  If there are n boolean variables, then there are 2n
different truth value assignments.

•  However, a solution can be quickly verified!

1/9/12 COT 6936 44

The SAT (Satisfiability) Problem!
•  Input: Boolean expression C in Conjunctive normal

 form (CNF) in n variables and m clauses.
•  Question: Is C satisfiable?

–  Let C = C1 ∧ C2 ∧ … ∧ Cm
–  Where each Ci =
–  And each ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
–  We want to know if there exists a truth assignment to all the

variables in the boolean expression C that makes it true.
•  Steve Cook showed that the problem of deciding whether a

non-deterministic Turing machine T accepts an input w or
not can be written as a boolean expression CT for a SAT
problem. The boolean expression will have length bounded by
a polynomial in the size of T and w.

()ikii
i
yyy ∨∨∨ 21

•  How to now prove Cook’s theorem? Is SAT in NP?
•  Can every problem in NP be poly. reduced to it ?

i
jy

1/9/12 COT 6936 45

co-NP

The problem classes and their relationships!

NP P NP-C

1/9/12 COT 6936 46

More NP-Complete problems!

3SAT
•  Input: Boolean expression C in Conjunctive normal

form (CNF) in n variables and m clauses. Each
clause has at most three literals.

•  Question: Is C satisfiable?
–  Let C = C1 ∧ C2 ∧ … ∧ Cm
–  Where each Ci =
–  And each ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
–  We want to know if there exists a truth assignment to all

the variables in the boolean expression C that makes it
true.

i
jy
()iii yyy 321 ∨∨

3SAT is NP-Complete.

1/9/12 COT 6936 47

3SAT is NP-Complete !
•  3SAT is in NP.
•  SAT can be reduced in polynomial time to 3SAT.
•  This implies that every problem in NP can be

reduced in polynomial time to 3SAT. Therefore,
3SAT is NP-Complete.

•  So, we have to design an algorithm such that:
–  Input: an instance C of SAT
–  Output: an instance C’ of 3SAT such that satisfiability is

retained. In other words, C is satisfiable if and only if C’
is satisfiable.

1/9/12 COT 6936 48

3SAT is NP-Complete
•  Let C be a SAT instance with clauses C1, C2, …, Cm
•  Let Ci be a disjunction of k > 3 literals.

 Ci = y1 ∨ y2 ∨ … ∨ yk
•  Rewrite Ci as follows:

C’i = (y1 ∨ y2 ∨ z1) ∧
 (¬ z1 ∨ y3 ∨ z2) ∧
 (¬ z2 ∨ y4 ∨ z3) ∧
 …
 (¬ zk-3 ∨ yk-1 ∨ yk)

•  Claim: Ci is satisfiable if and only if C’i is
satisfiable.

1/9/12 COT 6936 49

More NP-Complete problems?!

2SAT
•  Input: Boolean expression C in Conjunctive normal

form (CNF) in n variables and m clauses. Each
clause has at most three literals.

•  Question: Is C satisfiable?
–  Let C = C1 ∧ C2 ∧ … ∧ Cm
–  Where each Ci =
–  And each ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
–  We want to know if there exists a truth assignment to all

the variables in the boolean expression C that makes it
true.

i
jy

()ii yy 21 ∨

2SAT is in P.

1/9/12 COT 6936 50

2SAT is in P
•  If there is only one literal in a clause, it must

be set to true.
•  If there are two literals in some clause, and

if one of them is set to false, then the other
must be set to true.

•  Using these constraints, it is possible to
check if there is some inconsistency.

•  How? Homework: do not submit!

1/9/12 COT 6936 51

The CLIQUE Problem

CLIQUE
•  Input: Graph G(V,E) and integer k
•  Question: Does G have a clique of size k?

•  A clique is a completely connected subgraph.

1/9/12 COT 6936 52

CLIQUE is NP-Complete
•  CLIQUE is in NP.
•  Reduce 3SAT to CLIQUE in polynomial time.
•  F = (x1∨¬x2∨x3) (¬x1∨¬x3∨x4) (x2∨x3∨¬x4) (¬x1∨¬x2∨x3)

x1

¬x2

x3

¬x1 ¬x3
x4

F is satisfiable if and
only if G has a clique
of size k where k is
the number of clauses
in F.

1/9/12 COT 6936 53

Vertex Cover!
A vertex cover is a set of vertices that
“covers” all the edges of the graph.

Examples

1/9/12 COT 6936 54

Vertex Cover (VC)!
Input: Graph G, integer k
Question: Does G contain a vertex cover of size k?
•  VC is in NP.
•  polynomial-time reduction from CLIQUE to VC.
•  Thus VC is NP-Complete.

S

G

S

G’

Claim: G’ has a clique of size k’ if and only if G has a
VC of size k = n – k’

1/9/12 COT 6936 55

Hamiltonian Cycle Problem (HCP)!
Input: Graph G
Question: Does G contain a hamiltonian cycle?

•  HCP is in NP.
•  There exists a polynomial-time reduction

from 3SAT to HCP.
•  Thus HCP is NP-Complete.

Shortest Path vs Longest Path!
Input: Graph G with edge weights, vertices u

and v, bound B
Question: Does G contain a shortest path from

u to v of length at most B?

Question: Does G contain a longest path from u
to v of length at most B?

Homework: Listen to Cool MP3:
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

1/9/12 COT 6936 56

Perfect (2-D) Matching vs 3-D Matching!
1.  Input: Bipartite graph, G(U,V,E)

 Question: Does G have a perfect matching?

2.  Input: Sets U and V, and E = subset of U×V
 Question: Is there a subset of E of size |U|
that covers U and V? [Related to 1.]

3.  Input: Sets U,V,W, & E = subset of U×V×W
 Question: Is there a subset of E of size |U|
that covers U, V and W?

1/9/12 COT 6936 57

Coping with NP-Completeness!
•  Approximation: Search for an "almost"

optimal solution with provable quality.
•  Randomization: Design algorithms that find
“provably” good solutions with high prob
and/or run fast on the average.

•  Restrict the inputs (e.g., planar graphs), or
fix some input parameters.

•  Heuristics: Design algorithms that work
"reasonably well”.

1/9/12 COT 6936 58

Reading!
•  Read Background

–  Algorithms & Discrete Math Fundamentals
•  Cormen, et al., Chapters 1-16, 22-25

– NP-Completeness
•  Cormen et al., Chapter 34
•  Appendix (p187-288) form Garey & Johnson

•  Next Class
–  Approximation Algorithms

•  Cormen et al., Chapter 35
•  Kleinberg, Tardos, Chapter 11
•  Books by Vazirani and Hochbaum/Shmoys

1/9/12 COT 6936 59

