COT 6936: Topics in Algorithms

Giri Narasimhan
ECS 2B54A / EC 2443; Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/COT6936_512 html
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174




Purpose of this class

* First course in algorithms is inadequate
preparation for most PhD students

- Learn standard techniques

- Solve standard problems

- Learn basic analysis techniques
- Need to go beyond that!

» This course
- Model/formalize a problem
- Leverage existing solutions
- Create your own solutions

1/9/12 COT 6936



Expectations

Attend class

Do required reading before class
Participate in class discussions
Team work; discussion groups
Solve practical research problems

Make a presentation; write a report
- need a research component; may implement

Write research paper
No cell phones, SMS, or email during class

1/9/12 COT 6936 3




Evaluation

» Exam (1)
+ Quizzes

* Homework Assignments

+ Semester Project
* Class Participation

1/9/12

COT 6936

207
5%

15%
407
20%



Semester Project & Exam Schedule

* Milestones:
- By Jan 23: Meet with me and discuss project

- By Jan 30: Send me email with project team
information and topic

- Feb 20: Short presentation giving intro to
project, problem definition, notation, and
background

- March 5: Take-home Exam
- April 16, 23: Final presentation of project
- April 24: Written report on project

1/9/12 COT 6936 5



Why should | care about Algorithms?

Cartoon from Intractability by Garey and Johnson
o
QD !

“1 can’t find an efficient algorithm, I guess I'm just too dumb.”

1/9/12 COT 6936 6



Why are theoretical results useful?

““] can’t find an efficient algorithm, because no such algorithm is possible!”

Cartoon from Intractability by Garey and Johnson
1/9/12 COT 6936 7



Why are theoretical results useful?
IANEIAE I T T

51

\—s.aJ

“I can’t find an efficient algorithm, but neither can all these famous people.”

Cartoon from Intractability by Garey and Johnson
1/9/12 COT 6936 8



What if efficient algorithms don’ t exist

» Find good approximation algorithms
- Quality of the solution is guaranteed

* Find good heuristic algorithms
» Understand nature of inputs in practice

* Perform many experiments after
implementing

1/9/12 COT 6936 9



If you like Algorithms, nothing to worry about!

© Original Artist

Reproduction rights obtainable from
wwwy. CartoonStock.com

g'\

LA

cB

"Calculus is my new Versace., I get a buzz from
algorithms. What's going on with me, Raymond?

1/9/12 I'm scared.

10



Classical (Theoretical) Algorithmic Model

» Input-output description provided

» Input provided & stored in memory

» Output computed & stored or output immediately
» Entire program stored in memory

» Algebraic Computation-Tree Model (Variants:
indirection, floor function, square root)

+ Space (?) and time (?) efficiency
» Deterministic and Sequential algorithms
+ Worst-case analysis

- No other factors to consider

1/9/12 COT 6936 11



Find a “good” student

* Director of SCIS says to you: “Find me a
good CS student.”

* You ask: “What do you mean by good?”

* Director says: “S/he must be at least as
good as at least half of our current
students.”

1/9/12 COT 6936

12



Naive Solution

- Solution 1

- Email (or contact or inspect) N/2 + 1 students
and pick best among them

- Too inefficient

» Solution 2
- Pick a random student
- May be wrong about 7 the time

» Solution 3
- Pick r random students and pick best among them

1/9/12 COT 6936 13



Solution 3

* Prob of failure: 3
* Prob of failure: (1/2)"

1/9/12 COT 6936

14



Randomized algorithms

» Useful when you can tolerate failure

» 2 kinds of randomized algorithms
- Always fast, sometimes wrong (Monte Carlo)
- Always correct, sometimes slow (Las Vegas)

+ Complexity classes: RP, BPP, ZPP, ...

* Focus of study
- Design
- Analysis
» Time, Failure probability, Performance, Tradeoffs

1/9/12 COT 6936 15



Applications of Randomized Algorithms

» Contention Resolution: network protocol,
resource sharing

* Hashing

+ Storage: multi-level storage management
» Packet Routing

* Load Balancing

1/9/12 COT 6936 16



Facility Location

» Given: Location of all fire-stations in Miami
» Output: Optimal location of next fire-station
+ Strategy: find largest empty region

1/9/12 COT 6936 17



Achieving Height Diversity

* Given: Heights of all students in class

- Problem:

- Want to achieve diversity in heights
- Allowed to add a student. How to pick?

» Approach:
- Minimize the largest empty height range
» Solution:

- Find biggest empty height range and pick student
in that range

1/9/12 COT 6936 18



Achieving Height Diversity: a variant

* Given: Heights of all students in class

* Problem:

- Want to achieve diversity in heights

- Allowed to remove a student. How to pick?
» Approach:

- Maximize the smallest empty height range
» Solution:

- Find smallest empty height range and pick one of
two students

1/9/12 COT 6936 19



Heights of Students: What we know

* One problem is harder than the other!
* Which one and why? Homework!

- One has a lower bound!
- Relationship to EUP?

» The other can be solved faster, but with a
different/stronger computational model!

1/9/12 COT 6936 20



Updating a Binary Counter

* How many bits are changed when a binary
number is incremented?

- Worst-case?
- Average-case?

- Amortized analysis? Average cost over a worst-
case sequence of operations.

1/9/12 COT 6936 21



Binary Counter: What we know

* Worst case per increment = O(# bits)
» Average case per increment = O(# bits)
+ Amortized complexity = ??

1/9/12 COT 6936

22



Other Algorithmic Models

* Practical problems

- Making spot decisions: ON-LINE Algorithms
»+ Often randomized
- Use current state
» Sophisticated: use past history

- Not having enough memory or computing power:
STREAMING Algorithms

1/9/12 COT 6936 23



Practical Algorithmic Models

+ Sequential Algorithms
- Worst-case / average-case analysis
- Amortized Analysis

* Parallel Algorithms

* On-line Algorithms

* Randomized Algorithms

» Streaming Algorithms

- External Memory Algorithms

» Limited space/time/power Algorithms

* Making use of cache: Cache-aware Algorithms

1/9/12 COT 6936

24



Experimental Algorithms

* How to do good experiments in practice?
- Testing for correctness

- Testing for performance
* Modeling inputs in practice
* Trying different input distributions
» Optimizing performance for special input distributions

1/9/12 COT 6936 25



Additional Topics

+ Approximation Algorithms

» Computational Geometry

» Computational Biology

- String Algorithms

» Computational Finance

» Combinatorial Optimization

» Algorithmic Game Theory

* Heuristic Algorithms

* Problem Modeling and Transformations

1/9/12 COT 6936 26



Paging Algorithms

Here are 3 well-known paging algorithms

* Least Recently Used (LRU): evict item whose
most recent request was furthest in the past

* First-in, First-out (FIFO): evict item that
was brought in furthest in the past

* Least Frequently Used (LFU): evict item that
has been requested least often

Which ones are good algorithms and why?
What is an optimal algorithm?

1/9/12 COT 6936 27



Drunken sailors and cabins

* A ship arrives at a port. 40 sailors go ashore
for revelry. They return to the ship rather
inebriated. Being unable to remember their
cabin location, they find a random unoccupied
cabin to sleep the night. How many sailors
are expected to sleep in their own cabins?

- Variants? Generalizations?

1/9/12 COT 6936 28



Homework #1 - is herel

* Achieving diversity in heights:
- Largest empty range problem

- Smallest empty range problem

- Which is harder and why?

* Binary Counter

+ 25AT

* Drunken Sailors problem
- How many sailors will sleep in their own cabins?

* ACM Programming Contest Problems

1/9/12 COT 6936 29



NP-Completeness

» Computers and Intractability: A Guide to the
theory of NP-Completeness, by Garey and
Johnson

- Compendium (100 pages) of NP-Complete and
related problems

1/9/12 COT 6936 30



Polynomial-time computations

* An algorithm has (worst-case) time
complexity O(T(n)) if it runs in tfime at most
cT(n) for some ¢ > 0 and for every input of
length n. [Time complexity # worst-case.]

» An algorithm is a polynomial-time algorithm if
its (worst-case) time complexity is O(p(n)),
where p(n) is some polynomial in n.

[Polynomial in what?]

» Composition of polynomials is a polynomial.
[What are the implications?]

1/9/12 COT 6936 31




The class 2

* A problem is in 2 if there exists a
polynomial-time algorithm for the problem.
[2is therefore a class of problems, not
algorithms.]

+ Examples of problems in 2

- DFS: Linear-time algorithm exists

- Sorting: O(n log n)-time algorithm exists

- Bubble Sort: Quadratic-time algorithm O(n?)
- APSP: Cubic-time algorithm O(n3)

1/9/12 COT 6936 32



The class 72

* A problem is in 72 if there exists a non-
deterministic polynomial-time algorithm that

SO
- [A

ves the problem.

ternative definition] A problem is in 72 if

there exists a (deterministic) polynomial-
time algorithm that verifies a solution to the
problem.

» All problems in 2are in 2. [The converse is
the big deal!]

1/9/12 COT 6936 33



TSP: Traveling Salesperson Problem

- Input:

- Weighted graph, G

- Length bound, B

* Output:

- Is there a TSP tour in G of length at most B?

» Is TSP in 72?

- YES. Easy to verify a given solution.

« Is TSP in 2?

- OPEN

- One of the greatest unsolved problems of this century!
- Same as asking: Is 2 = 72?

1/9/12 COT 6936 34



So, what is 72- lamptese?

7P- amptere problems are the “hardest”
problems in 72.

- We need to formalize the notion of
“hardest”.

1/9/12 COT 6936

35



Terminology

- Problem:

- An abstract problem is a function (relation) from a set T

of instances of the problem to a set S of solutions.
p:I—=5
- An instance of a problem p is obtained by assigning values
to the parameters of the abstract problem.

- Thus, describing set of all instances (i.e., possible inputs)
and the set of corresponding outputs defines a problem.

» Algorithm:

- An algorithm that solves problem p must give correct
solutions to all instances of the problem.

* Polynomial-time algorithm:

1/9/12 COT 6936 36



Terminology (Cont’ d)
Input Length:

- length of an encoding of an instance of the problem.
- Time and space complexities are written in ferms of it.

Worst-case time/space complexity of an algorithm
- Maximum time/space required by algorithm on any input of length n.

Worst-case time/space complexity of a problem

- UPPER BOUND: worst-case time complexity of best existing
algorithm that solves the problem.

- LOWER BOUND: (provable) worst-case time complexity of best
algorithm (need not exist) that could solve the problem.

- LOWER BOUND = UPPER BOUND

Complexity Class 2:
- Set of all problems p for which polynomial-time algorithms exist

1/9/12 COT 6936 37



Terminology (Cont’ d)

Decision Problems:

- Problems for which the solution set is {yes, no}

- Example: Does a given graph have an odd cycle?

- Example: Does a given weighted graph have a TSP tour of length at most B?
Complement of a decision problem:

- Problems for which the solution is “complemented”.

- Example: Does a given graph NOT have an odd cycle?

- Example: Is every TSP tour of a given weighted graph of length > B?
Optimization Problems:

- Problems where one is maximizing/minimizing an objective function.

- Example: Given a weighted graph, find a MST.

- Example: Given a weighted graph, find an optimal TSP tour.
Verification Algorithms:

- Given a problem instance i and a certificate s, is s a solution for instance i?

1/9/12 COT 6936 38



Terminology (Cont’ d)

»+ Complexity Class 2:

- Set of all problems p for which polynomial-time
algorithms exist.

+ Complexity Class 72

- Set of all problems p for which polynomial-time
verification algorithms exist.

» Complexity Class «-77:
- Set of all problems p for which polynomial-time

verification algorithms exist for their
complements, i.e., their complements are in 72

1/9/12 COT 6936 39



Terminology (Cont’ d)

* Reductions: P1— P>

- A problem p, is reducible to p,, if there exists an
algorithm R that takes an instance i; of p; and outputs an
instance i, of p,, with the constraint that the solution for
i, is YES if and only if the solution for i, is YES.

- Thus, R converts YES (NO) instances of p; to YES (NO)
instances of p..

* Polynomial-time reductions: p; —=. p,
- Reductions that run in polynomial time.

+ If py —= p,, then
-If p, is easy, then so is p;. p,EP = p,EP
-If p; is hard, then so is p,. DEP = p,&EP

1/9/12 COT 6936 40



What are 72- Zamptete problems?

» These are the hardest problems in 72
» A problem p is 72-mmeter if

- there is a polynomial-time reduction from every
problem in 2 to p.

-pEZP
* How to prove that a problem is 72- Zmmeteze?

» Cook’ s Theorem: [1972]
-The SAT problem is 72~ Zamplete.

Steve Cook, Richard Karp, Leonid Levin

1/9/12 COT 6936 41



2 - Complete NS 7/P-Fara
- A problem p is 72-Gemetere if

- there is a polynomial-time reduction from every
problem in Z2to p.

- p — W

+ A problem p is 72-Ze if

- there is a polynomial-time reduction from every
problem in Z2to p.

+ Remember: to prove problem p is Z2-csmptere
you have o reduce a %2-¢@mgetese problem to p.

1/9/12 COT 6936 42




The SAT Problem: an example

» Consider the boolean expression:
C=(av-bvc)a(-avdv-e)a(av-dv -c)

+ Is C satisfiable? [Does there exist a True/False
assignments to the boolean variables a, b, ¢, d, e,
such that C is True?]

- If there are n boolean variables, then there are 2"
different truth value assignments.

* However, a solution can be quickly verified!

1/9/12 COT 6936 43



The SAT (Satisfiability) Problem

Input: Boolean expression C in Conjunctive normal
form (CNF) in n variables and m clauses.

Question: Is C satisfiable?

- LetC=CnCon ... AC,

- Whereeach C;= (ivyiv-vyi)

- Andeach » €{x;, = X{, X5, = X5, ..., X, = X}

- We want to know if there exists a truth assignment to all the

variables in the boolean expression C that makes it true.

Steve Cook showed that the problem of deciding whether a
non-deterministic Turing machine T accepts an input w or
not can be written as a boolean expression C; for a SAT
problem. The boolean expression will have length bounded by
a polynomial in the size of T and w.

* How to now prove Cook’s theorem? Is SAT in 72?

- Can every problem in 7ZZbe poly. reduced to it ?
1/9/12 COT 6936 44




The problem classes and their relationships

1/9/12 COT 6936 45



More 72- (Zamptete problems

3SAT

* Input: Boolean expression C in Conjunctive normal
form (CNF) in n variables and m clauses. Each
clause has at most three literals.

* Question: Is C satisfiable?
-LetC=CanCon .. AC,
- Where each C; = (i vy, v ¥
- Andeach ¥, € {xq, = X, X5, = X5, ..., Xp, = X}

- We want to know if there exists a truth assignment to all
the variables in the boolean expression C that makes it

true.

3SAT IS 7P-amptec.

1/9/12 COT 6936 46



3SAT IS 72- omptese

- 3SAT is in 22

* SAT can be reduced in polynomial time to 3SAT.

» This implies that every problem in Z2can be
reduced in polynomial time to 3SAT. Therefore,
3SAT is 22- Gomptere

* So, we have to design an algorithm such that:

- Input: an instance C of SAT

- Output: an instance C' of 3SAT such that satisfiability is
retained. In other words, C is satisfiable if and only if C’
is satisfiable.

1/9/12 COT 6936 47



3SAT IS 7P- omptete

* Let C be a SAT instance with clauses C;, C,, ..., C,,
+ Let C, be a disjunction of k> 3 literals.

Ci: YIVYZV'”VYI-(
» Rewrite C; as follows:
Ci= (Y1 VY2V zy) A

(- z3vysv zy)A
(- ZpVvysv z3) A

(= Zx3 Vv VitV Vi)

* Claim: C; is satisfiable if and only if C’; is
satisfiable.

1/9/12 COT 6936 48



More 72~ (Zamptete problems?

2SAT

* Input: Boolean expression C in Conjunctive normal
form (CNF) in n variables and m clauses. Each
clause has at most three literals.

* Question: Is C satisfiable?
-LetC=CnCon .. AC,
- Where each C;= (/v y!)
- And each ) €{xy, = X1, X5, = Xz, ., Xp, ™ X}

- We want to know if there exists a truth assignment to all
the variables in the boolean expression C that makes it

true.

2SAT isin2

1/9/12 COT 6936 49



2SAT is in 2

» If there is only one literal in a clause, it must
be set to frue.

- If there are two literals in some clause, and
if one of them is set to false, then the other
must be set to true.

» Using these constraints, it is possible to
check if there is some inconsistency.

- How? Homework: do not submit!

1/9/12 COT 6936 50



The CLIQUE Problem

» A clique is a completely connected subgraph.

CLIQUE
* Input: Graph G6(V,E) and integer k
* Question: Does G have a clique of size k?

1/9/12 COT 6936

51



CLIQUE is %2- Zomutere

+ CLIQUE is in 72
* Reduce 3SAT to CLIQUE in polynomial time.

* F = (X;v=X%,vX3) (=X Vv=X3VXy,) (XoVX3V=X,) (5 XV =X,V X3)

. F is satisfiable if and
1 only if G has a clique
v of size k where k is
X3 the number of clauses
in F.
! - X5 X4

1/9/12 COT 6936 52




Vertex Cover

A vertex cover is a set of vertices that
“covers” all the edges of the graph.

VAN

e
VA

1/9/12 COT 6936

Examples

53



Vertex Cover (VC)

Input: Graph G, integer k

Question: Does G contain a vertex cover of size k?

- VCis in 72,

» polynomial-time reduction from CLIQUE to VC.

» Thus VC is 72- Gompter.
G

Claim: 6" has a clique of size k’ if and only if G has a
VC of sizek=n-k

1/9/12 COT 6936 54



Hamiltonian Cycle Problem (HCP)

Input: Graph G
Question: Does G contain a hamiltonian cycle?

- HCP is in 2

* There exists a polynomial-time reduction
from 3SAT to HCP.

» Thus HCP is 72- omptez.

1/9/12 COT 6936 55



Shortest Path vs Longest Path

Input: Graph G with edge weights, vertices u
and v, bound B

Question: Does G contain a shortest path from
u to v of length at most B?

Question: Does G contain a longest path from u
to v of length at most B?

Homework: Listen to Cool MP3:
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

1/9/12 COT 6936 56



Perfect (2-D) Matching vs 3-D Matching

1. Input: Bipartite graph, 6(U,V E)
Question: Does G have a perfect matching?

2. Input: Sets U and V, and E = subset of UxV

Question: Is there a subset of E of size |U]
that covers U and V? [Related to 1.]

3. Input: Sets U, V,W, & E = subset of UxVxW

Question: Is there a subset of E of size |U]
that covers U, V and W?

1/9/12 COT 6936 57



Coping with NP-Completeness

» Approximation: Search for an "almost"
optimal solution with provable quality.

» Randomization: Design algorithms that find
“provably” good solutions with high prob
and/or run fast on the average.

* Restrict the inputs (e.g., planar graphs), or
fix some input parameters.

* Heuristics: Design algorithms that work
"reasonably well”.

1/9/12 COT 6936 58



Reading

* Read Background

- Algorithms & Discrete Math Fundamentals
- Cormen, et al., Chapters 1-16, 22-25

- NP-Completeness

» Cormen et al., Chapter 34
+ Appendix (p187-288) form Garey & Johnson

- Next Class

- Approximation Algorithms
- Cormen et al., Chapter 35
- Kleinberg, Tardos, Chapter 11
* Books by Vazirani and Hochbaum/Shmoys

1/9/12 COT 6936

59



