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Purpose of this class!
•  First course in algorithms is inadequate 

preparation for most PhD students 
–  Learn standard techniques 
–  Solve standard problems 
–  Learn basic analysis techniques 
– Need to go beyond that! 

•  This course 
– Model/formalize a problem 
–  Leverage existing solutions 
–  Create your own solutions 
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Expectations!
•  Attend class 
•  Do required reading before class 
•  Participate in class discussions 
•  Team work; discussion groups 
•  Solve practical research problems 
•  Make a presentation; write a report 

–  need a research component; may implement 
•  Write research paper 
•  No cell phones, SMS, or email during class 
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Evaluation!
•  Exam (1)     20% 
•  Quizzes     5% 
•  Homework Assignments  15% 
•  Semester Project   40% 
•  Class Participation   20% 



Semester Project & Exam Schedule!
•  Milestones:  

–  By Jan 23: Meet with me and discuss project 
–  By Jan 30: Send me email with project team 

information and topic 
–  Feb 20: Short presentation giving intro to 

project, problem definition, notation, and 
background 

– March 5: Take-home Exam  
–  April 16, 23: Final presentation of project 
–  April 24: Written report on project 
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Why should I care about Algorithms?!
Cartoon from Intractability by Garey and Johnson!
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Why are theoretical results useful? !

Cartoon from Intractability by Garey and Johnson!
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Why are theoretical results useful? !

Cartoon from Intractability by Garey and Johnson!



What if efficient algorithms don’t exist!
•  Find good approximation algorithms 

– Quality of the solution is guaranteed 
•  Find good heuristic algorithms 
•  Understand nature of inputs in practice 
•  Perform many experiments after 

implementing 
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If you like Algorithms, nothing to worry about!!



Classical (Theoretical) Algorithmic Model!
•  Input-output description provided 
•  Input provided & stored in memory 
•  Output computed & stored or output immediately 
•  Entire program stored in memory 
•  Algebraic Computation-Tree Model (Variants: 

indirection, floor function, square root) 
•  Space (?) and time (?) efficiency 
•  Deterministic and Sequential algorithms 
•  Worst-case analysis 
•  No other factors to consider 
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Find a “good” student!
•  Director of SCIS says to you: “Find me a 

good CS student.” 
•  You ask: “What do you mean by good?” 
•  Director says: “S/he must be at least as 

good as at least half of our current 
students.” 
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Naïve Solution!
•  Solution 1 

–  Email (or contact or inspect) N/2 + 1 students 
and pick best among them 

–  Too inefficient 
•  Solution 2 

–  Pick a random student 
– May be wrong about ½ the time 

•  Solution 3 
–  Pick r random students and pick best among them 
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Solution 3!
•  Prob of failure: ½ 
•  Prob of failure: (1/2)r 
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Randomized algorithms!
•  Useful when you can tolerate failure 
•  2 kinds of randomized algorithms 

–  Always fast, sometimes wrong (Monte Carlo) 
–  Always correct, sometimes slow (Las Vegas) 

•  Complexity classes: RP, BPP, ZPP, … 
•  Focus of study 

–  Design  
–  Analysis 

•  Time, Failure probability, Performance, Tradeoffs 
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Applications of Randomized Algorithms!
•  Contention Resolution: network protocol, 

resource sharing 
•  Hashing 
•  Storage: multi-level storage management 
•  Packet Routing 
•  Load Balancing 
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Facility Location!
•  Given: Location of all fire-stations in Miami 
•  Output: Optimal location of next fire-station 
•  Strategy: find largest empty region 
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Achieving Height Diversity!
•  Given: Heights of all students in class 
•  Problem:  

– Want to achieve diversity in heights  
–  Allowed to add a student. How to pick? 

•  Approach: 
– Minimize the largest empty height range 

•  Solution: 
–  Find biggest empty height range and pick student 

in that range 
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Achieving Height Diversity: a variant!
•  Given: Heights of all students in class 
•  Problem:  

– Want to achieve diversity in heights  
–  Allowed to remove a student. How to pick? 

•  Approach: 
– Maximize the smallest empty height range 

•  Solution: 
–  Find smallest empty height range and pick one of 

two students 
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Heights of Students: What we know!
•  One problem is harder than the other! 
•  Which one and why? Homework! 
•  One has a lower bound!  

–  Relationship to EUP? 
•  The other can be solved faster, but with a 

different/stronger computational model!  
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Updating a Binary Counter!
•  How many bits are changed when a binary 

number is incremented? 
– Worst-case? 
–  Average-case? 
–  Amortized analysis? Average cost over a worst-

case sequence of operations.  
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Binary Counter: What we know!
•  Worst case per increment = O(# bits) 
•  Average case per increment = O(# bits) 
•  Amortized complexity = ?? 
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Other Algorithmic Models!
•  Practical problems 

– Making spot decisions: ON-LINE Algorithms 
• Often randomized 
•  Use current state 
•  Sophisticated: use past history 

– Not having enough memory or computing power: 
STREAMING Algorithms 
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Practical Algorithmic Models!
•  Sequential Algorithms 

–  Worst-case / average-case analysis 
–  Amortized Analysis 

•  Parallel Algorithms 
•  On-line Algorithms 
•  Randomized Algorithms 
•  Streaming Algorithms 
•  External Memory Algorithms 
•  Limited space/time/power Algorithms 
•  Making use of cache: Cache-aware Algorithms 
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Experimental Algorithms!
•  How to do good experiments in practice? 

–  Testing for correctness 
–  Testing for performance 

• Modeling inputs in practice 
•  Trying different input distributions 
• Optimizing performance for special input distributions 
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Additional Topics!
•  Approximation Algorithms 
•  Computational Geometry 
•  Computational Biology 

–  String Algorithms 
•  Computational Finance 
•  Combinatorial Optimization 
•  Algorithmic Game Theory 
•  Heuristic Algorithms 
•  Problem Modeling and Transformations 
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Paging Algorithms!
Here are 3 well-known paging algorithms 
•  Least Recently Used (LRU): evict item whose 

most recent request was furthest in the past 
•  First-in, First-out (FIFO): evict item that 

was brought in furthest in the past 
•  Least Frequently Used (LFU): evict item that 

has been requested least often 
Which ones are good algorithms and why? 
What is an optimal algorithm? 
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Drunken sailors and cabins!
•  A ship arrives at a port. 40 sailors go ashore 

for revelry. They return to the ship rather 
inebriated. Being unable to remember their 
cabin location, they find a random unoccupied 
cabin to sleep the night. How many sailors 
are expected to sleep in their own cabins? 

•  Variants? Generalizations?  
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Homework #1 – is here! !
•  Achieving diversity in heights: 

–  Largest empty range problem 
–  Smallest empty range problem 
– Which is harder and why? 

•  Binary Counter 
•  2SAT  
•  Drunken Sailors problem 

– How many sailors will sleep in their own cabins? 
•  ACM Programming Contest Problems  
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NP-Completeness!
•  Computers and Intractability: A Guide to the 

theory of NP-Completeness, by Garey and 
Johnson 
–  Compendium (100 pages) of NP-Complete and 

related problems 
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Polynomial-time computations!
•  An algorithm has (worst-case) time 

complexity O(T(n)) if it runs in time at most 
cT(n) for some c > 0 and for every input of 
length n. [Time complexity ≈ worst-case.] 

•  An algorithm is a polynomial-time algorithm if 
its (worst-case) time complexity is O(p(n)), 
where p(n) is some polynomial in n. 
[Polynomial in what?] 

•  Composition of polynomials is a polynomial. 
[What are the implications?] 
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The class P 
•  A problem is in P if there exists a 

polynomial-time algorithm for the problem. 
[P is therefore a class of problems, not 
algorithms.] 

•  Examples of problems in P 
–  DFS: Linear-time algorithm exists 
–  Sorting: O(n log n)-time algorithm exists 
–  Bubble Sort: Quadratic-time algorithm O(n2) 
–  APSP: Cubic-time algorithm O(n3) 
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The class NP 
•  A problem is in NP if there exists a non-

deterministic polynomial-time algorithm that 
solves the problem. 

•  [Alternative definition] A problem is in NP if 
there exists a (deterministic) polynomial-
time algorithm that verifies a solution to the 
problem. 

•  All problems in P are in NP. [The converse is 
the big deal!] 
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TSP: Traveling Salesperson Problem!
•  Input:  

–  Weighted graph, G 
–  Length bound, B 

•  Output:  
–  Is there a TSP tour in G of length at most B? 

•  Is TSP in NP? 
–  YES. Easy to verify a given solution. 

•  Is TSP in P? 
–  OPEN!  
–  One of the greatest unsolved problems of this century! 
–  Same as asking: Is P = NP? 
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So, what is NP-Complete?!
• NP-Complete problems are the “hardest” 

problems in NP. 
•  We need to formalize the notion of 
“hardest”. 
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Terminology !
•  Problem:  

–  An abstract problem is a function (relation) from a set I 
of instances of the problem to a set S of solutions.  

p: I → S 

–  An instance of a problem p is obtained by assigning values 
to the parameters of the abstract problem. 

–  Thus, describing set of all instances (i.e., possible inputs) 
and the set of corresponding outputs defines a problem.  

•  Algorithm:  
–  An algorithm that solves problem p must give correct 

solutions to all instances of the problem. 
•  Polynomial-time algorithm:  
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Terminology (Cont’d)!
•  Input Length: 

–  length of an encoding of an instance of the problem. 
–  Time and space complexities are written in terms of it. 

•  Worst-case time/space complexity of an algorithm 
–  Maximum time/space required by algorithm on any input of length n. 

•  Worst-case time/space complexity of a problem 
–  UPPER BOUND: worst-case time complexity of best existing 

algorithm that solves the problem. 
–  LOWER BOUND: (provable) worst-case time complexity of best 

algorithm (need not exist) that could solve the problem.  
–  LOWER BOUND ≤ UPPER BOUND 

•  Complexity Class P : 
–  Set of all problems p for which polynomial-time algorithms exist 
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Terminology (Cont’d)!
•  Decision Problems: 

–  Problems for which the solution set is {yes, no} 
–  Example: Does a given graph have an odd cycle? 
–  Example: Does a given weighted graph have a TSP tour of length at most B? 

•  Complement of a decision problem: 
–  Problems for which the solution is “complemented”. 
–  Example: Does a given graph NOT have an odd cycle? 
–  Example: Is every TSP tour of a given weighted graph of length > B? 

•  Optimization Problems: 
–  Problems where one is maximizing/minimizing an objective function. 
–  Example: Given a weighted graph, find a MST. 
–  Example: Given a weighted graph, find an optimal TSP tour. 

•  Verification Algorithms: 
–  Given a problem instance i and a certificate s, is s a solution for instance i? 
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Terminology (Cont’d)!

•  Complexity Class P : 
–  Set of all problems p for which polynomial-time 

algorithms exist. 
•  Complexity Class NP : 

–  Set of all problems p for which polynomial-time 
verification algorithms exist. 

•  Complexity Class co-NP : 
–  Set of all problems p for which polynomial-time 

verification algorithms exist for their 
complements, i.e., their complements are in NP. 
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Terminology (Cont’d)!
•  Reductions:   p1 → p2 

–  A problem p1 is reducible to p2, if there exists an 
algorithm R that takes an instance i1 of p1 and outputs an 
instance i2 of p2, with the constraint that the solution for 
i1 is YES if and only if the solution for i2 is YES.  

–  Thus, R converts YES (NO) instances of p1 to YES (NO) 
instances of p2. 

•  Polynomial-time reductions: p1         p2 
–  Reductions that run in polynomial time. 

•   If p1         p2, then 
– If p2 is easy, then so is p1.          p2 ∈ P   ⇒   p1 ∈ P  
– If p1 is hard, then so is p2.          p1 ∉ P   ⇒   p2 ∉ P  

 

!→!P

!→!P
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What are NP-Complete problems?!
•  These are the hardest problems in NP. 
•  A problem p is NP-Complete if  

–  there is a polynomial-time reduction from every 
problem in NP to p. 

–  p ∈ NP 
•  How to prove that a problem is NP-Complete? 

•  Cook’s Theorem: [1972] 
– The SAT problem is NP-Complete. 

 

Steve Cook, Richard Karp, Leonid Levin 
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NP-Complete vs NP-Hard !
•  A problem p is NP-Complete if  

–  there is a polynomial-time reduction from every 
problem in NP to p. 

–  p ∈ NP 
•  A problem p is NP-Hard if  

–  there is a polynomial-time reduction from every 
problem in NP to p. 

•  Remember: to prove problem p is NP-Complete 
you have to reduce a NP-Complete problem to p. 
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The SAT Problem: an example!
•  Consider the boolean expression: 

 C = (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (a ∨ ¬d ∨ ¬c) 
•  Is C satisfiable? [Does there exist a True/False 

assignments to the boolean variables a, b, c, d, e, 
such that C is True?] 

•  If there are n boolean variables, then there are 2n 
different truth value assignments.  

•  However, a solution can be quickly verified! 
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The SAT (Satisfiability) Problem!
•  Input: Boolean expression C in Conjunctive normal  

 form (CNF) in n variables and m clauses. 
•  Question: Is C satisfiable?  

–  Let C = C1 ∧ C2 ∧  …  ∧ Cm 
–  Where each Ci =    
–  And each        ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}  
–  We want to know if there exists a truth assignment to all the 

variables in the boolean expression C that makes it true.  
•  Steve Cook showed that the problem of deciding whether a 

non-deterministic Turing machine T accepts an input w or 
not can be written as a boolean expression CT for a SAT 
problem. The boolean expression will have length bounded by 
a polynomial in the size of T and w. 

( )ikii
i
yyy ∨∨∨ 21

•  How to now prove Cook’s theorem? Is SAT in NP?  
•  Can every problem in NP be poly. reduced to it ? 

i
jy
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co-NP 

The problem classes and their relationships!

NP P NP-C 
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More NP-Complete problems!

3SAT 
•  Input: Boolean expression C in Conjunctive normal 

form (CNF) in n variables and m clauses. Each 
clause has at most three literals. 

•  Question: Is C satisfiable?  
–  Let C = C1 ∧ C2 ∧  …  ∧ Cm 
–  Where each Ci =    
–  And each        ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}  
–  We want to know if there exists a truth assignment to all 

the variables in the boolean expression C that makes it 
true.  

i
jy
( )iii yyy 321 ∨∨

3SAT  is NP-Complete.  
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3SAT is NP-Complete !
•  3SAT is in NP. 
•  SAT can be reduced in polynomial time to 3SAT. 
•  This implies that every problem in NP can be 

reduced in polynomial time to 3SAT. Therefore, 
3SAT is NP-Complete. 

•  So, we have to design an algorithm such that: 
–  Input: an instance C of SAT 
–  Output: an instance C’ of 3SAT such that satisfiability is 

retained. In other words, C is satisfiable if and only if C’ 
is satisfiable. 
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3SAT is NP-Complete 
•  Let C be a SAT instance with clauses C1, C2, …, Cm 
•  Let Ci be a disjunction of k > 3 literals. 

 Ci =  y1 ∨ y2 ∨ …  ∨ yk 
•  Rewrite Ci as follows: 

C’i =  (y1 ∨ y2 ∨ z1) ∧ 
   (¬ z1 ∨ y3 ∨ z2) ∧ 
   (¬ z2 ∨ y4 ∨ z3) ∧ 
   … 
   (¬ zk-3 ∨ yk-1 ∨ yk)  

•  Claim: Ci is satisfiable if and only if C’i is 
satisfiable.   
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More NP-Complete problems?!

2SAT 
•  Input: Boolean expression C in Conjunctive normal 

form (CNF) in n variables and m clauses. Each 
clause has at most three literals. 

•  Question: Is C satisfiable?  
–  Let C = C1 ∧ C2 ∧  …  ∧ Cm 
–  Where each Ci =    
–  And each        ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}  
–  We want to know if there exists a truth assignment to all 

the variables in the boolean expression C that makes it 
true.  

i
jy
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2SAT  is in P.  



1/9/12 COT 6936 50 

2SAT is in P 
•  If there is only one literal in a clause, it must 

be set to true. 
•  If there are two literals in some clause, and 

if one of them is set to false, then the other 
must be set to true.  

•  Using these constraints, it is possible to 
check if there is some inconsistency.  

•  How? Homework: do not submit! 
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The CLIQUE Problem 

CLIQUE 
•  Input: Graph G(V,E) and integer k 
•  Question: Does G have a clique of size k? 

•  A clique is a completely connected subgraph. 
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CLIQUE is NP-Complete 
•  CLIQUE is in NP. 
•  Reduce 3SAT to CLIQUE in polynomial time.  
•  F = (x1∨¬x2∨x3) (¬x1∨¬x3∨x4) (x2∨x3∨¬x4) (¬x1∨¬x2∨x3) 

x1 

¬x2 

x3 

¬x1 ¬x3 
x4 

F is satisfiable if and  
only if G has a clique  
of size k where k is  
the number of clauses 
in F. 
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Vertex Cover!
A vertex cover is a set of vertices that 
“covers” all the edges of the graph. 

Examples 
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Vertex Cover (VC)!
Input: Graph G, integer k 
Question: Does G contain a vertex cover of size k? 
•  VC is in NP. 
•  polynomial-time reduction from CLIQUE to VC. 
•  Thus VC is NP-Complete. 

S 

G

S 

G’ 

Claim: G’ has a clique of size k’ if and only if G has a 
VC of size k = n – k’ 
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Hamiltonian Cycle Problem (HCP)!
Input: Graph G 
Question: Does G contain a hamiltonian cycle? 
 
•  HCP is in NP. 
•  There exists a polynomial-time reduction 

from 3SAT to HCP. 
•  Thus HCP is NP-Complete. 



Shortest Path vs Longest Path!
Input: Graph G with edge weights, vertices u 

and v, bound B 
Question: Does G contain a shortest path from 

u to v of length at most B? 

Question: Does G contain a longest path from u 
to v of length at most B? 

Homework: Listen to Cool MP3: 
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3 
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Perfect (2-D) Matching vs 3-D Matching!
1.  Input: Bipartite graph, G(U,V,E) 

 Question: Does G have a perfect matching? 

2.  Input: Sets U and V, and E = subset of U×V 
 Question: Is there a subset of E of size |U| 
that covers U and V? [Related to 1.] 

3.  Input: Sets U,V,W, & E = subset of U×V×W 
 Question: Is there a subset of E of size |U| 
that covers U, V and W?  
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Coping with NP-Completeness!
•  Approximation: Search for an "almost" 

optimal solution with provable quality. 
•  Randomization: Design algorithms that find 
“provably” good solutions with high prob 
and/or run fast on the average.  

•  Restrict the inputs (e.g., planar graphs), or 
fix some input parameters. 

•  Heuristics: Design algorithms that work 
"reasonably well”.  
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Reading!
•  Read Background 

–  Algorithms & Discrete Math Fundamentals 
•  Cormen, et al., Chapters 1-16, 22-25 

– NP-Completeness 
•  Cormen et al., Chapter 34 
•  Appendix (p187-288) form Garey & Johnson 

•  Next Class 
–  Approximation Algorithms 

•  Cormen et al., Chapter 35 
•  Kleinberg, Tardos, Chapter 11 
•  Books by Vazirani and Hochbaum/Shmoys 
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