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Expectations

Attend class

Do required reading before class
Participate in class discussions
Team work; discussion groups
Solve practical research problems

Make a presentation; write a report
- need a research component; may implement

Write research paper
No cell phones, SMS, or email during class

1/23/12 COT 6936 2




Evaluation

» Exam (1)
+ Quizzes

* Homework Assignments

+ Semester Project
* Class Participation
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Semester Project & Exam Schedule

* Milestones:
- By Jan 23: Meet with me and discuss project

- By Jan 30: Send me email with project team
information and topic

- Feb 20: Short presentation giving intro to
project, problem definition, notation, and
background

- March 5: Take-home Exam
- April 16, 23: Final presentation of project
- April 24: Written report on project
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Homework #1

* Achieving diversity in heights:
- Largest empty range problem

- Smallest empty range problem

- Which is harder and why?

* Binary Counter

- How many bits were changed when a binary
counter is incremented from O to N?

* Drunken Sailors problem
- How many sailors will sleep in their own cabins?
* ACM Programming Contest Problems
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Reading

* Read Background

- Algorithms & Discrete Math Fundamentals
- Cormen, et al., Chapters 1-16, 22-25

- NP-Completeness

» Cormen et al., Chapter 34
+ Appendix (p187-288) form Garey & Johnson

- Next Class

- Approximation Algorithms
- Cormen et al., Chapter 35
- Kleinberg, Tardos, Chapter 11
* Books by Vazirani and Hochbaum/Shmoys
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What are 72- Zamptete problems?

» These are the hardest problems in 72
» A problem p is 72-mmeter if

- there is a polynomial-time reduction from every
problem in 2 to p.

-pEZP
* How to prove that a problem is 72- Zmmeteze?

» Cook’ s Theorem: [1972]
-The SAT problem is 772~ ampleze

Steve Cook, Richard Karp, Leonid Levin

1/23/12 COT 6936 7



The SAT Problem: an example

» Consider the boolean expression:
C=(av-bvc)a(-avdv-e)a(av-dv -c)

+ Is C satisfiable? [Does there exist a True/False
assignments to the boolean variables a, b, ¢, d, e,
such that C is True?]

- If there are n boolean variables, then there are 2"
different truth value assignments.

* However, a solution can be quickly verified!
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The SAT (Satisfiability) Problem

Input: Boolean expression C in Conjunctive normal
form (CNF) in n variables and m clauses.

Question: Is C satisfiable?

- LetC=CnCon ... AC,

- Whereeach C;= (ivyiv-vyi)

- Andeach » €{x;, = X{, X5, = X5, ..., X, = X}

- We want to know if there exists a truth assignment to all the

variables in the boolean expression C that makes it true.

Steve Cook showed that the problem of deciding whether a
non-deterministic Turing machine T accepts an input w or
not can be written as a boolean expression C; for a SAT
problem. The boolean expression will have length bounded by
a polynomial in the size of T and w.

* How to now prove Cook’s theorem? Is SAT in 72?

- Can every problem in 7ZZbe poly. reduced to it ?
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The problem classes and their relationships
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More 72- (Zamptete problems

3SAT

* Input: Boolean expression C in Conjunctive normal
form (CNF) in n variables and m clauses. Each
clause has at most three literals.

+ Question: Is C satisfiable?
-LetC=CnCon .. AC,
- Where each C; = (i vy, v ¥
- Andeach ¥, € {x;, = X{, X5, = X, ..., Xp, = X}

- We want to know if there exists a truth assignment to all
the variables in the boolean expression C that makes it

true.

3SAT IS 22- Gempters:
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3SAT IS 72- omptese

- 3SAT is in 22

* SAT can be reduced in polynomial time to 3SAT.

» This implies that every problem in Z2can be
reduced in polynomial time to 3SAT. Therefore,
3SAT is 22- Gomptere

* So, we have to design an algorithm such that:

- Input: an instance C of SAT

- Output: an instance C' of 3SAT such that satisfiability is
retained. In other words, C is satisfiable if and only if C’
is satisfiable.
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3SAT IS 7P- omptete

* Let C be a SAT instance with clauses C;, C,, ..., C,,
+ Let C, be a disjunction of k> 3 literals.

Ci: YIVYZV'”VYI-(
» Rewrite C; as follows:
Ci= (Y1V Y2V z1) A

(- z3vysv zy)A
(- ZpVvysv z3) A

(= Zx3 Vv VitV Vi)

* Claim: C; is satisfiable if and only if C’; is
satisfiable.
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More 72~ (Zamptete problems?

2SAT

* Input: Boolean expression C in Conjunctive normal
form (CNF) in n variables and m clauses. Each
clause has at most three literals.

+ Question: Is C satisfiable?
-LetC=CnCon .. AC,
- Where each C;= (/v y!)
- And each ) €{xy, = X1, X5, = Xz, ., Xp, ™ X}

- We want to know if there exists a truth assignment to all
the variables in the boolean expression C that makes it

true.

2SAT isin2
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2SAT is in 2

» If there is only one literal in a clause, it must
be set to frue.

- If there are two literals in some clause, and
if one of them is set to false, then the other
must be set to true.

» Using these constraints, it is possible to
check if there is some inconsistency.

- How? Homework: do not submit!
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The CLIQUE Problem

» A clique is a completely connected subgraph.

CLIQUE
* Input: Graph G6(V,E) and integer k
* Question: Does G have a clique of size k?
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CLIQUE is %2- Zomutere

+ CLIQUE is in 72
* Reduce 3SAT to CLIQUE in polynomial time.

* F = (X;v=X%,vX3) (=X Vv=X3VXy,) (XoVX3V=X,) (5 XV =X,V X3)

. F is satisfiable if and
1 only if G has a clique
v of size k where k is
X3 the number of clauses
in F.
! - X5 X4
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Vertex Cover

A vertex cover is a set of vertices that
“covers” all the edges of the graph.

VAN

e
VA
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Vertex Cover (VC)

Input: Graph G, integer k

Question: Does G contain a vertex cover of size k?

- VCis in 72,

» polynomial-time reduction from CLIQUE to VC.

» Thus VC is 72- Gompter.
G

Claim: 6" has a clique of size k’ if and only if G has a
VC of sizek=n-k
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Hamiltonian Cycle Problem (HCP)

Input: Graph G
Question: Does G contain a hamiltonian cycle?

- HCP is in 2

* There exists a polynomial-time reduction
from 3SAT to HCP.

» Thus HCP is 72- omptez.
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Shortest Path vs Longest Path

Input: Graph G with edge weights, vertices u
and v, bound B

Question: Does G contain a shortest path from
u to v of length at most B?

Question: Does G contain a longest path from u
to v of length at most B?

Homework: Listen to Cool MP3:
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3
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Perfect (2-D) Matching vs 3-D Matching

1. Input: Bipartite graph, 6(U,V E)
Question: Does G have a perfect matching?

2. Input: Sets U and V, and E = subset of UxV

Question: Is there a subset of E of size |U]
that covers U and V? [Related to 1.]

3. Input: Sets U, V,W, & E = subset of UxVxW

Question: Is there a subset of E of size |U]
that covers U, V and W?
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Coping with NP-Completeness

» Approximation: Search for an "almost"
optimal solution with provable quality.

» Randomization: Design algorithms that find
“provably” good solutions with high prob
and/or run fast on the average.

* Restrict the inputs (e.g., planar graphs), or
fix some input parameters.

* Heuristics: Design algorithms that work
"reasonably well”.
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Optimization Problems

- Problem:

- A problem is a function (relation) from a set I of
instances of the problem to a set S of solutions.

- p:I =S

- Decision Problem:

- Problem with S = {TRUE, FALSE}

» Optimization Problem:

- Problem with a mapping from set S of solutions to a
positive rational number called the solution value

- p:I—-S—-=m(I,S)
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Optimization Versions of NP-Complete Problems

- TSP

- CLIQUE

+ Vertex Cover & Set Cover
amiltonian Cycle
amiltonian Path

+ SAT & 3SAT

» 3-D matching
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Optimization Versions of NP-Complete Problems

» Computing a minimum TSP tour is NP-hard
(every problem in NP can be reduced to it in
polynomial time)

+ BUT, it is not known to be in NP

* If a problem P is NP-Complete, then its
optimization version is NP-hard (i.e., it is at
least as hard as any problem in NP, but may
not be in NP)

- Proof by contradiction!
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Performance Ratio

» Approximation Algorithm A

- A(T)

» Optimal Solution

- OPT(I)

* Performance Ratio on input I for
minimization problems

- R,(I) = max {A(T)/OPT(I), OPT(I)/A(I)}
* Performance Ratio of approximation
algorithm A

- R, =inf{r 21| R,(I) < r, for all instances}

1/23/12 COT 6936
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Metric Space

» It generalizes concept of Euclidean space

»+ Set with a distance function (metric) defined
onh its elements

-DIM XM R (assigns a real number to
distance between every pair of elements from
the metric space M)

*D(x,y)=0iff x=y

- D(x,y)20

* D(x.y) = D(y.x)

* D(x.y) + D(y,z) 2 D(x,2)
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Examples of metric spaces

- Euclidean distance
. Lp metrics
* Graph distances

- Distance between elements is the length of the
shortest path in the graph
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TSP

» TSP in general graphs cannot be
approximated to within a constant (Why?)

- What is the approach?

* Prove that it is hard to approximatel
» TSP in general metric spaces holds promisel
- NN heuristic [Rosenkrantz, et al. 77]

- NN(T) ¢ % (ceil(log,n) + 1) OPT(TI)
- 2-OPT, 3-OPT, k-OPT, Lin-Kernighan Heuristic
» Can TSP in general metric spaces be
approximated to within a constant?
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TSP in Euclidean Space

» TSP in Euclidean space can be approximated.

- MST Doubling (DMST) Algorithm
- Compute a MST, M
* Double the MST to create a tour, T,
* Modify the tour tfo get a TSP four, T

- Theorem: DMST is a 2-approximation algorithm
for Euclidean metrics, i.e., DMST(I) < 2 OPT(I)

- Analysis:
* L(T) < L(T,) = 2L(M) < 2L(T op7)
- Is the analysis tight?

1/23/12 COT 6936 31



Example of MST Doubling Algorithm
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Example of Christofides Algorithm
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TSP in Euclidean Metric

* Improved algorithms
- MM(T) < 3/2 OPT(T) [Christofides]

» Christofides observed that DMST has 4 stages:

- Find MST

- Double all edges

- Find Eulerian tour of resulting graph
- Convert Eulerian tour into TSP tour

* He modified step 2 to the following
- Add a matching of odd degree vertices

- PTAS(I) < (1+¢) OPT(I)[Arora]
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TSP Approximation Algorithm

Theorem: The MST doubling algorithm is a 2-
approximation algorithm for inputs from any
metric space.
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Vertex Cover

* Find the smallest set of vertices that are
adjacent to all edges in the graph.

» Approximation Algorithm:
- Initialize vertex cover C = empty set

- while (an edge remains in the graph)
» Choose arbitrary edge e = (u,v)
» Add u and v to vertex cover C
* Remove all edges incident on u or v

- Output set C
+ Analysis: |C| < 2|Cpprl [Is this tight?]
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Greedy Vertex Cover

» Algorithm
- While graph G has at least one edge
* Pick vertex v of highest degree in Gand add to VC
* Remove all edges incident onv in G
* Analysis
- |VC| < log n [VCppr] [Is this tight?]
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Greedy Vertex Cover: Analysis

+ Pay $1 for each vertex picked

» If vertex v was chosen in an iteration, then
each edge e deleted in that iteration was
covered with cost(e) = $ 1/deg(v)

» Thus, in each iteration, picking vertex with
max degree is same as picking vertex with
least average cost per incident edge

» Size of VC picked = sum of edge costs
* Goal is to bound sum of edge costs
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Greedy Vertex Cover: Analysis

* Label edges in deletion order e, e,,..e,.,
* Let e, be edge deleted in iteration i

+ At least m-j+1 edges remain at start of
iteration i which can be covered by C with
average cost K/(m-j+1)

* Total cost of all edges <|Z K/(m-j+1)
* < Klogm
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Greedy Vertex Cover: Analysis

» Performance ratio < log n

* Is the analysis tight?

- Goal is to find graph such that after K rounds,
we are left with half the edges uncovered

- Make the graph recursive so that we need log n
such rounds before all edges are covered.

* Challengel

* Another challenge: try to generalize to
weighted vertex cover problem
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Complements and Approx Algorithms

+ Complement of a clique subgraph is an
independent set (i.e., a subgraph with no
edges connecting any of the vertices)

» If a vertex cover is removed (including all

incident edges), what remains?
- ??

» If the minimum vertex cover problem can be
2-approximated, what about the maximum
clique or maximum independent set?

- ??
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Edge Colorings

* Theorem: Every graph can be edge colored
with at most A+l colors, where A is the
maximum degree of the graph.

* Theorem: No graph can be edge colored with
less than A colors.

* Theorem: It is NP-complete to decide
whether a graph can be edge colored with A
colors [Holyer, 1981]

- Thus it can be approximated to within an additive
constant. Can't do better than that!
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Some NP-Complete Number Problems

* Input: set S of nintegers
- Question 1: Is there a subset of S that adds

up to O? SUBSET-SUM
- Example: { -7, -3, -2, 5, 8}

» Input: set S of nintegers, and integer B

* Question 2: Is there a subset of S that adds
up to B (part of input)?
- Example

S={267,493,869,961,1000,1153,1246,1598,
1766,1922} and B = 5842
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More NP-Complete Number Problems

* Input: set S of nintegers

* Question 3: Is there a partition of S into
two subsets each with the same sum?

- Example: { -7,-3,-2,1, 5, 8} PARTITION
» Input: set S of 3n integers
* Question 4: Is there a partition of S into

|S|/3 subsets each of size 3 and each of
which adds up to the same value?

- Strongly NP-Completel 3-PARTITION
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Load Balancing

Input: m identical machines; n jobs, job j has
processing fime ¥;.

- Job j must run contiguously on one machine.

- A machine can process at most one job at a time.

Def: The load of machine i is L; = sum of
processing times of assigned jobs.

Def: The makespan is the maximum load on
any machine L = max; L..

Load balancing: Assign each job to a machine
to minimize makespan. NP-Complete problem

1/23/12 COT 6936 Example from Kleinberg & Tardos; *0
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Example

LLoad on Machine 1

Machine 1 (SR R R T
Machine 2 [ R I
Machine 3 SR A I

Makespan
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Greedy Algorithm

» Algorithm:
- for jobs 1 to n (in any order)
» Assignh job j To machine with least load

+ Observations:

1. Lopr 2 max {1y, ..., t,}

2. Loptr 2 Z,1./m (average load on a machine)
3. If n>m, then Lopr 2 21,

1/23/12 COT 6936

48



Machine 1 [ SR R T
Machine 2 [T AT
Machine 3 [EEEERT A EREE

Greedy Algorithm

Machine 1
Machine 2 [ EEEETT I
Machine 3 [EEEERTE [ EREE
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Analysis

* Theorem: Greedy Algorithm is 2-approximate

- Proof:

- Let i be machine with maximum load L. Let j be
last job scheduled on it.

- Before j was assignhed, machine i had least load.
- Thus L; - t; < average load < Lopy

* Is the analysis tight?
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Analysis is tight!
]
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Longest Processing Time (LPT) Algorithm

» Algorithm:
- for jobs 1 to n (in decreasing order of time)
» Assign job j to machine with least load

* Proof:

- Let i be machine with maximum load L. Let j be
last job scheduled on it.

- The last job is the shortest and is at most Lpt/2
- Thus L. is at most (3/2)Lopt [if n>m]

* Is the analysis tight?

- Nol (4/3)-approximation exists [Graham, 1969]
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Fractional Knapsack Problem

* Burglar's choices:

n bags of valuables: x;, x,, ..., x,

Unit Value: v, v,, ..., v,

Max number of units in bag: q, q-, ..., q,

Weight per unit: wq, w,, ..., w,

Getaway Truck has a weight limit of B.

Burglar can take "fractional” amount of any item.
How can burglar maximize value of the loot?

* Greedy Algorithm worksl!

Pick maximum quantity of highest value per weight
item. Continue until weight limit B is reached.
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0-1 Knapsack Problem

» Burglar's choices:

Items: xq, X5, ..., X,

Value: vy, v,, ..., v,

Weight: wy, w,, .., w,

Getaway Truck has a weight limit of B.
"Fractional” amount of items NOT allowed
How can burglar maximize value of the loot?
* Greedy Algorithm does not workl Why?

* Need dynamic programming!
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0-1 Knapsack Problem: Example

1 1 1
2 6 2
B=12 3 18 5
4 22 6
5 28 7
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0-1 Knapsack Problem

» Subproblems?

- V[j, L] = Optimal solution for knapsack problem assumin
truck weight limit L & choice of items from set {1,2,..., j}.

- V[n, B] = Optimal solution for original problem
- V[1, L] = easy to compute for all values of L.

* Recurrence Relation? [Either x; included or not]
- V[j,L]1=max { V[j-1,L] , v+ V[j-1,L-w]}

- Table of solutions?

- V[1..n, 1..B]

* Ordering of subproblems?
- Row-wise
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Another NP-Complete Number Problem

* Input: set S of nitems each with values {v;,
...V} and weights {w,...w,}. Knapsack with
weight limit B and value V

* Question: Is there a choice of items from S
whose weights add up to at most B and whose
value adds up to at least V?

KNAPSACK
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Knapsack Problem

* The 0-1 Knapsack problem is NP-Complete.

» The 0-1 Knapsack problem can be solved
exactly in O(nB) time.

* Does this mean 2 = 72?2 What is going on
here?

* What we have here is a pseudo-polynomial
time algorithm. Why?
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Knapsack: Approximations

* Greedy Algorithm is 2-approximate
- Sort items by value/weight

- Greedily add items to knapsack if it does not
exceed the weight limit

* Improved algorithm is (1 + 1/k)-approximate
[Sahni, 1975]

- Time complexity is polynomial in n, logV, and logB
- Time complexity is exponential in k

- This is a "approximation scheme”

- Implies cannot get to within an additive constant!
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Clustering

- Set of points {p,,...,p,} in R¢

» Typical data mining problem is to find k
clusters in this data

.
.
® .
®
° 5 2
L P
® | K
¢ *
* e *

K 2
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Clustering

» Requires a distance function
- Euclidean distance (L, distance) and L, metrics
- Mahalanobis distance
- Pearson Correlation Coefficient
- General metric distance

* Requires an objective function to optimize
- Maximum distance to a center
- Sum of distances to a center
- Median of distance to a center

» Can any point be center? (finite vs infinite)

1/23/12 COT 6936 61



Clustering

+ Set of points S = {p;,....p,.} in R¢

- Find a set of k centers such that the
maximum of the distance of a point to its
closest center is minimized.

* Min,. Max; d(p;,C)
* d(p;,C) = Min, - dist(p;.c;) *
¢

*

R 2
*
L 2
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Well-known clustering techniques

» Algorithms
- K-Means
- Hierarchical clustering
- Clustering using MSTs

- Greedy algorithm

» Put first center at best possible location for single
center; then keep adding centers to reduce covering
radius each time by as much as possible.

» Disadvantages

- All three are heuristic algorithms (solutions not
optimal, no provable approximation factor)
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Clustering: Approximation Algorithm

* Improved Greedy algorithm:

- Repeatedly choose (k vertices selected) next center to
be site farthest from any existing center. Choose first
center arbitrarily.

i
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Clustering: Approximation Analysis

* Analysis:
- Let r = radius of largest greedy cluster
- Let ropr = radius of largest optimal cluster

- If distance from optimal center to every site is < rop-,
then distance from any site o some optimal center is <
ropt- Vake ball of radius rop+around every greedy center.
All optimal centers are covered;

- Ball of radius 2rqp around each greedy center will cover
every site.

- Thusr <2 rppr.
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Alternative (Corrected) Proof

* Improved Greedy algorithm:

- Repeatedly choose (k vertices selected) next center to
be site farthest from any existing center

* Analysis:
- Let r = min distance between 2 greedy centers & rqpt =
radius of largest cluster in optimal clustering

- Let r> 2rgpr. Take ball of radius 3r around every greedy
center. Exactly one optimal center in each ball (?);

- Pair optimal and greedy centers (c;,c*).

- Let s be any site and ¢;* be its nearest optimal center
- d(s, C) < d(s, c,) ¢ d(s, c*) +d(c™, c) < 2r(C*).

- Thus r(C) < 2r(C*), i.e., r < 2rqpr
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Observation

* Analysis compared r with r .+ without

knowing what the optimal clustering looked
likel
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Yet Another Proof!

* Improved Greedy algorithm:

- Repeatedly choose (k vertices selected) next center to
be site farthest from any existing center

* Analysis:
- Let r = min distance between 2 greedy centers & rqpt =
radius of largest cluster in optimal clustering

- Let r> 2rgpr. Take ball of radius 3r around every greedy
center. Exactly one optimal center in each ball (?);

- Ball of radius rop+ around each greedy center will cover
every optimal center. Ball of radius 2r,, around each
greedy center will cover every site.

- Thus r < 2 rgpr. CONTRADICTIONI
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Bin Packing

* Given an infinite number of unit capacity bins
» Given finite set of items with rational sizes

* Place items into minimum number of bins such
that each bin is never filled beyond capacity

* BIN-PACKING is NP-Complete
- Reduction from 3-PARTITION
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Bin Packing: Approx Algorithm

* First-Fit:

- place item in lowest numbered bin that can
accommodate item

» FF(T) < 2 OPT(I)
+ FF(T) < 17/10 OPT(I) + 2
» First-Fit Decreasing:

- Sort items in decreasing size and then do first-
fit placement
- FFD(T) = 11/9 OPT(T) + 4
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Bin Packing: Approx Algorithm

» Connection to Partition
- Hard even when you have only 2 bins

- Cannot approximate to within (3/2)-¢ unless P =
NP

- Can get (1+&)approximation if OPT > 2/¢
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Set Cover

* Greedy Algorithm

- While there are uncovered items
- Find set with most uncovered items and add to cover

* Analysis
- Approximation Ratio = log n

- It is tight. In example below, it will pick 5 sets
instead of 2.

N
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Approximability of NP-Hard Problems

1+¢ Euclidean TSP (Arora)
15 Euclidean TSP (Christofides)
2 Vertex Cover
c Coloring
log n Set Cover
log?n
Jn
ne Independent Set, Clique
n General TSP

Reading

Assignment
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Required Reading for Feb 6

* Network Flow
- Ford Fulkerson Algorithm

* Linear Programming
- Standard LP

- Dual LP
- Feasibility and feasible region
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