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Gaussian Elimination!
•  Solving a system of simultaneous equations 

x1         -2x3        = 2 
       x2 + x3          = 3 
x1 + x2          - x4  = 4 
       x2 + 3x3 + x4  = 5 
 
x1         -2x3         = 2 
        x2 + x3          = 3 
        x2 + 2x3 - x4  = 2 
        x2 + 3x3 + x4  = 5 

O(n3) algorithm 



Linear Programming!
•  Want more than solving simultaneous 

equations 
•  We have an objective function to optimize 



Chocolate Shop [DPV book]!
•  2 kinds of chocolate  

– milk [Profit: $1 per box] [Demand: 200] 
–  Deluxe [Profit: $6 per box] [Demand: 300] 

•  Production capacity: 400 boxes 
•  Goal: maximize profit 

– Maximize x1 + 6x2 subject to constraints: 
•  x1 ≤ 200 
•  x2 ≤ 300 
•  x1 + x2 ≤ 400 
•  x1, x2 ≥ 0 



Diet Problem!
•  Food type:   F1,…,Fm 
•  Nutrients:   N1,…,Nn 

•  Min daily requirement of nutrients: c1,…,cn 

•  Price per unit of food:  b1,…,bm 

•  Nutrient Nj in food Fi:  aij 

•  Problem: Supply daily nutrients at minimum 
cost 

• Min Σi bixi 
• Σi aijxi ≥ cj   for 1 ≤ j ≤ n 
•  xi ≥ 0 



Transportation Problem!
•  Ports or Production Units:  P1,…,Pm 
•  Markets to be shipped to:  M1,…,Mn 

•  Min daily market need:   r1,…,rn 

•  Port/production capacity:   s1,…,sm 

•  Cost of transporting to Mj from port Pi:  aij 

•  Problem: Meet market need at minimum 
transportation cost 



Assignment Problem!
•  Workers: b1,…,bn 
•  Jobs: g1,…,gm 

•  Value of assigning person bi to job gj: aij 

•  Problem: Choose job assignment to maximize 
value 



Bandwidth Allocation Problem!

•  Revenue:  
A − B pays $3 per unit  
B − C pays $2 per unit  
C − A pays $4 per unit 

•  Need:  
A − B ≥ 2 units  
B − C ≥ 2 units   
C − A ≥ 2 units 

•  Connections:  
Short route 
Long route  



Bandwidth Allocation Problem!
•  Maximize revenue by allocating bandwidth to 

connections along two routes without 
exceeding bandwidth capacities 

•  Max 3(xAB+xAB’) + 2(xBC+xBC’) + 4(xAC+xAC’) s.t. 
xAB + xAB’ + xBC + xBC’ ≤ 10 
xAB + xAB’ + xAC + xAC’ ≤ 12 
xBC + xBC’ + xAC + xAC’ ≤ 8     
xAB + xBC’ + xAC’ ≤ 6;    xAB + xAB’ ≥ 2;     xBC + xBC’ ≥ 2 
xAB’ + xBC + xAC’ ≤ 13;       xAC + xAC’ ≥ 2 
xAB’ + xBC’ + xAC ≤ 11; & all nonneg constraints 



Standard LP!
•  Maximize Σcjxj     [Objective Function] 
 Subject to Σaijxj ≤ bj  [Constraints]  
    and xj ≥ 0 [Nonnegativity Constraints]  

 

•  Matrix formulation of LP 
 Maximize   cTx 
 Subject to        Ax ≤ b 
 and         x ≥ 0 



Converting to standard form!
•  Min -2x1 + 3x2 Subject to  

x1 + x2 = 7 
x1 – 2x2 ≤ 4 
x1 ≥ 0 

•  Max 2x1 - 3x2 Subject to  
x1 + x2 ≤ 7 
-x1 - x2 ≤ -7 
x1 – 2x2 ≤ 4 
x1 ≥ 0 



Converting to standard form!
•  Max 2x1 - 3x2 Subject to  

x1 + x2 ≤ 7 
-x1 - x2 ≤ -7 
x1 – 2x2 ≤ 4 
x1 ≥ 0 

•  Max 2x1 – 3(x3 - x4) Subject to  
x1 + x3 - x4 ≤ 7 
-x1 – (x3 - x4) ≤ -7 
x1 – 2(x3 - x4) ≤ 4 
x1, x3, x4 ≥ 0 

x2 is not 
constrained to 
be non-negative 



Converting to Standard form!
•  Max 2x1 – 3x2 + 3x3 Subject to  

x1 + x2 – x3 ≤ 7 
-x1 – x2 + x3 ≤ -7 
x1 – 2x2 – 2x3 ≤ 4 
x1, x2, x3 ≥ 0 



Slack Form!
•  Max 2x1 – 3x2 + 3x3 Subject to  

x1 + x2 – x3 ≤ 7 
-x1 – x2 + x3 ≤ -7 
x1 – 2x2 – 2x3 ≤ 4 
x1, x2, x3 ≥ 0 

•  Max 2x1 – 3x2 + 3x3 Subject to  
x1 + x2 – x3 + x4 = 7 
-x1 – x2 + x3 + x5 = -7 
x1 – 2x2 – 2x3 + x6 = 4 
x1, x2, x3, x4, x5, x6 ≥ 0 



Duality!
•  Max cTx     [Primal] 
 Subject to Ax ≤ b 
 and x ≥ 0 

•  Min yTb     [Dual] 
 Subject to yTA ≥ c 
 and y ≥ 0 

 



Understanding Duality!
•  Maximize x1 + 6x2 subject to constraints: 

•  x1 ≤ 200   (1) 
•  x2 ≤ 300   (2) 
•  x1 + x2 ≤ 400  (3) 
•  x1, x2 ≥ 0 

•  (100,300) is feasible; value = 1900. Optimum? 
•  Adding 1 times (1) + 6 times (2) gives us 

•  x1 + 6x2 ≤ 2000 

•  Adding 1 times (3) + 5 times (2) gives us 
•  x1 + 6x2 ≤ 1900 
•  “Certificate of Optimality” for solution (100,300) 

How were 
mutipliers 

determined? 



Understanding Duality!
•  Maximize x1 + 6x2 subject to: 

•  x1        ≤ 200   (y1) 
•        x2 ≤ 300   (y2)   [(100,300)] 
•  x1 + x2 ≤ 400   (y3) 
•  x1, x2 ≥ 0 

•  Different choice of multipliers gives us 
different bounds. We want smallest bound.  

•  Minimize 200y1 + 300y2 + 400y3  subject to: 
•  y1       + y3  ≥ 1   (x1) 
•        y2 + y3 ≥ 6   (x2)   [(0,5,1)] 
•  y1, y2 ≥ 0 



Duality Principle!
•  Primal feasible values ≤ dual feasible values 
•  Max primal value = min dual value 
•  Duality Theorem: If a linear program has a 

bounded optimal value then so does its dual 
and the two optimal values are equal.  



Shortest Path Problem as a LP!
•  Graph G = (V,E);  

–  Vertices: v1,…,vn; Edges: e1,…,em;  
– Weight function on edges w(ei); Source s; Dest t; 

•  LP: min wTx  
–  s.t.  A x = b and x ≥ 0 

•  Here A and b are defined as follows: 
–  Aij = +1 if ej leaves vi;   bs = +1 
–        = -1 if ej enters vi;   bt = -1 
–        = 0 otherwise;   bi = 0 else;  

•  We want integral solutions for x 



Dual LP!
•  LP: min wTx  

–  s.t.  A x = b and x ≥ 0 
•  Dual LP: max ys-yt 

–  s.t.  |yu - yv| ≤ w(e) for every edge e = (u,v) 



Visualizing Duality!
•  Shortest Path Problem 

–  Build a physical model and between each pair of 
vertices attach a string of appropriate length 

–  To find shortest path from s to t, hold the two 
vertices and pull them apart as much as possible 
without breaking the strings 

–  This is exactly what a dual LP solves! 
• Max xs-xt 
•  subject to |xu-xv| ≤ wuv for every edge (u.v) 

–  The taut strings correspond to the shortest 
path, i.e., they have no slack 



Linear Constraints: Geometric View!

Vertex: point where n hyperplanes meet; 
Neighbor: vertices sharing n-1 hyperplanes   

i.e., some inequalities 
satisfied as equalities 

2,3,7 

1,3,7 



Simplex Algorithm!
•  Start at v, any vertex of feasible region 
•  while (there is neighbor v’ of v with better 

objective value) do 
  set v = v’ 

•  Report v as optimal point and its value as 
optimal value 

•  What is a 
–  Vertex?, neighbor? 

•  Start vertex? How to pick next neighbor? 



Steps of Simplex Algorithm!
•  In order to find next neighbor from 

arbitrary vertex, we do a change of origin 
(pivot) 



Simplex Algorithm Example!



Simplex Algorithm Example!



Simplex Algorithm Example!



Simplex Algorithm: Degenerate vertices!

Vertex: point where n hyperplanes meet; 
Neighbor: vertices sharing n-1 hyperplanes   

i.e., some inequalities 
satisfied as equalities 

2,3,7 

1,3,7 

2,3,4,5 



Polynomial-time algorithms for LP!
•  Simplex is not poly-time in the worst-case 
•  Khachiyan’s ellipsoid algorithm: LP is in P 
•  Karmarkar’s interior-point algorithm 
•  Good implementations for LP exist 

– Works very well in practice 
– More competitive than the poly-time methods 

for LP 



Integer Linear Programming!
•  LP with integral solutions 
•  NP-hard 
•  If A is a totally unimodular matrix, then the 

LP solution is always integral.  
–  A TUM is a matrix for which every nonsingular 

submatrix has determinant 0, +1 or -1. 
–  A TUM is a matrix for which every nonsingular 

submatrix has integral inverse. 



Vertex Cover as an LP?!
•  For vertex v, create variable xv 
•  For edge (u,v), create constraint xu + xv ≥ 1 
•  Objective function: Σxv 

•  Additional constraints: xv ≤ 1 

•  Doesn’t work because xv needs to be from 
{0,1} 



Integer Linear Programming!
•  LP with integral solutions 
•  NP-hard 
•  If A is a totally unimodular matrix, then the 

LP solution is always integral.  
–  A TUM is a matrix for which every nonsingular 

submatrix has determinant 0, +1 or -1. 
–  A TUM is a matrix for which every nonsingular 

submatrix has integral inverse. 



Vertex Cover as an LP?!
•  For vertex v, create variable xv 
•  For edge (u,v), create constraint xu + xv ≥ 1 
•  Objective function: Σxv 

•  Additional constraints: xv ≤ 1 

•  Doesn’t work because xv needs to be from 
{0,1} 



Set Cover!
•  Given a universe of items U = {e1, …, en} and a 

collection of subsets S = {S1, …, Sm} such 
that each Si is contained in U 

•  Find the minimum set of subsets from S that 
will cover all items in U (i.e., the union of 
these subsets must equal U) 

•  Weighted Set Cover: Given universe U and 
collection S, and a cost c(Si) for each subset 
Si in S, find the minimum cost set cover  





•  U = {e, f, g} 
•  S1 = {e, f} 
•  S2 = {f, g} 
•  S3 = {e, g} 
•  Optimal set cover = {S1, S2} 
•  Fractional optimal set cover assigns ½ to 

each of three sets giving a total optimal 
value of 3/2.  

Fractional LP may have higher objective 
function value than integer LP!





K-Approximation Alg using Dual Fitting!

Value of Primal Optimal 
LP solution = Value of 

Dual Optimal LP solution 

Value of Optimal ILP 
solution 

0 ∞ 

Value of Greedy 
solution 

Value of Dual Feasible 
solution obtained from 

greedy solution 

Ratio to be 
bounded by K 







Rounding Algorithm for Set Cover!
•  Algorithm 

–  Find an optimal solution to the LP Relaxation 
–  Pick all sets S for which xS ≥ 1/f in this solution 

•  f = frequency of most frequent item 

•  Analysis 
–  Is the resulting solution a valid set cover? 
– How good is the solution? How close is to the 

optimal set cover?  



Analysis of Rounding Algorithm!


