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Gaussian Elimination

» Solving a system of simultaneous equations
X1 -2X;5 =2
Xy + X3 =3 O(n?) algorithm
X1+ X5 -X, =4
X, +3X3+ Xy =D

X1 -2X;5 =2
X5 + X3 =3
Xy + 2X3-Xy4 =2
X, +3X3+X, =D



Linear Programming

» Want more than solving simultaneous
equations

* We have an objective function to optimize



Chocolate Shop [DPV bookK]

» 2 kinds of chocolate
- milk [Profit: $1 per box] [Demand: 200]
- Deluxe [Profit: $6 per box] [Demand: 300]

* Production capacity: 400 boxes

* Goal: maximize profit
- Maximize x; + 6x, subject to constraints:
* X1 <200
- X, < 300
* Xy + X, < 400
* Xq, X, 20



Diet Problem

* Food type: Fi P

- Nutrients: N,,....N,

* Min daily requirement of nutrients: c,....c,
* Price per unit of food: by,...b,,

* Nutrient N; in food F;: ot

* Problem: Supply daily nutrients at minimum

cost
* Min 2. b.x.

* 2,0, 2 C; forl<j<n

* x;20



Transportation Problem

* Ports or Production Units: P,,.. P,

* Markets to be shipped to: M,,...M,,

* Min daily market need: S
* Port/production capacity: S1,.-,Sp

+ Cost of transporting to M; from port P;:

* Problem: Meet market need at minimum
transportation cost

J



Assignment Problem

+ Workers: by,....b,

- Jobs: g4,...,9,,

* Value of assigning person b; to job g;: a;;

* Problem: Choose job assignment to maximize
value



Bandwidth Allocation Problem

Figure 7.3 A communications network between three users A, B, and C. Bandwidths are

shown.
. Need: =1 + Revenue:
A - B> 2 units 12 A - B pays $3 per unit
B -C2>2 units a B - C pays $2 per unit
C - A > 2 units C - A pays $4 per unit

 Connections:
Short route

Long route

10

13

user




Bandwidth Allocation Pr

* Maximize revenue by allocating
connections along two routes wi

exceeding bandwidth capacities

BL

12

6 11

C
b 13

10 8

user
C

* Max 3(Xxsp+Xap) + 2(XpctXpc ) + 4(XactXac) S.T.

Xap+ Xap + Xpc+ Xpc ¢ 10

Xap+ Xap + Xac* Xac ¢ 12

Xpc* Xpc *+ Xact Xac ¢ 8

Xapt Xpe + Xpac €6. Xpp* Xap 22
Xag * Xgc * Xac ¢ 13

Xpc+ Xpc 2 2
Xac+ Xac 22

Xap + Xpc + Xac ¢ 11:4 all nonneg constraints




Standard LP

- Maximize ZCJXJ- [Objective Function]

Subject to 2a;;X; < b; [Constraints]

and XJ- >0 [Nonnegativity Constraints]

» Matrix formulation of LP
Maximize c'x
Subject to Ax < b
and x>0



Converting to standard form

* Min -2x; + 3x, Subject to
X1+ X,=7/

X1 - 2X, ¢4

x;20

* Max 2x; - 3x, Subject to
X+ X,¢ 7/

-X{ - X, ¢ -/

X;-2X, ¢4

X120



Converting to standard form

* Max 2x, - 3x, Subject to
X;+X,¢7

X, 1S hot

-X; - Xo ¢ -/ .
17 constrained to
X1=2X,¢ 4 be non-negative

x;20
* Max 2x; - 3(x5 - X4) Subject to
X+ X3-Xa¢7/

-X1 = (X3- X4) < -7

X1 = 2(X3-X4) <4

Xy X3, X420



Converting to Standard form

* Max 2x; - 3x,+ 3X5 Subject to
Xi+ Xo=-X3¢7
-X1 = Xo*+ X3¢ -7
X1 - 2X,-2X3¢4
Xy X5, X320



Slack Form

* Max 2x; - 3x,+ 3X5 Subject to
Xi+ Xo=-X3¢7
-X1 = Xo*+ X3¢ -7
X1 - 2X,-2X3¢4
Xy X5, X320
* Max 2x; - 3x,+ 3X5; Subject to
Xi+Xo= X3+ X,=7
-X1 = Xo+ X3+ X5 = -7/
X1 = 2X,= 2X3+ X, = 4
X1, X2, X3, Xg, X5, X2 0



Duality

» Max c'x [Primal]
Subject fo Ax<b
and x 2 0

* Miny'b [Dual]

Subject toy'A>c
andy >0



Understanding Duality

* Maximize x; + 6x, subject to constraints:

* %1 £ 200 (1) How were

. X, < 300 (2) mutipliers
. X; + X, < 400 (3) determined?
¢ Xl, XZ 2 O

* (100,300) is feasible; veide = 1900. Optimum?
* Adding 1 times (1) + 6 times (2) gives us

* X; + 6%, < 2000

» Adding 1 times (3) + 5 times (2) gives us

+ Xy + 6%, < 1900

* "Certificate of Optimality” for solution (100,300)



Understanding Duality

* Maximize x; + 6x, subject to:

" X <200 (y1)

X, ¢ 300 (y,) [(100,300)]
' Xp+ X < 400 (y3)
* Xy, X,20

+ Different choice of multipliers gives us
different bounds. We want smallest bound.

* Minimize 200y, + 300y, + 400y; subject to:

"Y1 +ys 21 (x1)
Y2+Y326 (x2) [(0,5,1)]
"Y1, Y220



Duality Principle

- Primal feasible values < dual feasible values

*|Max primal value = min dual value

* Duality Theorem: If a linear program has a
bounded optimal value then so does its dual
and the two optimal values are equal.



Shortest Path Problem as a LP
» Graph G = (V,E):

- Vertices: vy,..,v,; Edges: e;,...e,..
- Weight function on edges w(e,); Source s; Dest t;
» LP: min w'x

-st. Ax=bandx:20

» Here A and b are defined as follows:

- A;; = +1if e leaves v; 0, = +1
- =-lifesentersy; D; = -1
- = 0 otherwise; 0. = 0 else;

* We want integral solutions for x



Dual LP
* LP: min w'x
-st. Ax=band x>0

* Dual LP: max y.-y,
-s.t.  |y,- vl ¢ w(e) for every edge e = (u,v)



Visualizing Duality

- Shortest Path Problem

- Build a physical model and between each pair of
vertices attach a string of appropriate length

- To find shortest path from s to t, hold the two
vertices and pull them apart as much as possible
without breaking the strings

- This is exactly what a dual LP solves!

* Max x-x.
» subject to |x,-x,| < w,, for every edge (u.v)

- The taut strings correspond to the shortest
path, i.e., they have no slack



Linear Constraints: Geometric View

(i.e., some inequalities
Figure 7.12 A polyhedron defined by seven inequalities. _satisfied as equalities

S
A max x1 + 6z + 1324
x2 < 300

z1 + 22 + z3 < 400
x9 + 3z3 < 600

z1 >0

2o 2> @

g B

- Vertex: point where n hyperplanes meet;
/ Neighbor: vertices sharing n-1 hyperplanes




Simplex Algorithm

+ Start at v, any vertex of feasible region

» while (there is neighbor v' of v with better
objective value) do

setv=V

* Report v as optimal point and its value as
optimal value

* What is a
- Vertex?, neighbor?

+ Start vertex? How to pick next neighbor?



Steps of Simplex Algorithm

* In order to find next neighbor from
arbitrary vertex, we do a change of origin

(pivot)

Initial LP: Current vertex: {@), (5} (origin).

Objective value: 0.
max 2x; + bxo

Move: increase zo.

2z1 —x2 < 4 @D ; .
1 +220 < 9 @ (®) 1s released, 3) becomes tight. Stop at z2 = 3.
—wf g 5 3 (9 New vertex {4, 3} has local coordinates (1, y2):
T Z 0 @
zo 2 0 @ Y1 = x1, Y2 = 3+ x1— X9




Simplex Algorithm Example

{®,®}
Increase
’y1/
{®,D}
. {D, @}
Increase
X3
max 2x1 + 5o
8 2x1—x2 S 4
{®@,®)} {@:8F =2 =9
—z1+z2 < 3
X1 Z 0
) 2 0

@ ® @G



Simplex Algorithm Example

Initial LP: Current vertex: {@),® } (origin).
Objective value: 0.
max 2xzy + 5xo
Oy —zg < 4 @ Move: increase xo.
o s & 18 ) (5) is released, (8) becomes tight. Stop at x5 = 3.
—z1+z2 < 3 @ New vertex {(4), 3} has local coordinates (y1, v2 ):
z1 > 0 @
2 >0 @ y1 = 1, Y2 = 3+xT1— X2
Rewritten LP: Current vertex: {4),(®}.

max 15+ 7y — dyo

nty2 <7 @
dJy1—2y2 £ 3 @
y2 = 0 ®

1 2 0 @

-1 +y2 < 3 ®

Objective value: 15.

Move: increase .
@ is released, (2) becomes tight. Stop at y; = 1.

New vertex {(2), 3} has local coordinates (21, z2):

21 = 3—3n1+ 2y2, z2a=1y2




Simplex Algorithm Example

Rewritten LP:

max 15+ 7y — dyo

Current vertex: {4),(®}.
Objective value: 15.

a4 @ BT A go've: i1n o e@%lb tight. Stop at y; = 1
is released, ecomes tight. Stop at 1 = 1.
y1—2y2 < 3 (2 . e
y2 > 0 ® New vertex {(2), (3} has local coordinates (21, z2):
yr 20 @
21 = 3—3y1+2y2, 2=
“ntyp <& 6 ! Hu gy e ge
Rewritten LP: Current vertex: {(2,(3}.
Objective value: 22.
max 22 — gzl — %ZQ
—Ln 435 < 6 @ Optimal: all ¢; < 0.
4 2 0 @ Solve (2),® (in original LP) to get optimal solution
zg 2> 0 ® (:Cl,xg) = (1,4)
%zl == %zg S 1 @
o1+ 520 < 4 ®




Simplex Algorithm: Degenerate vertices

(i.e., some inequalities
Figure 7.12 A polyhedron defined by seven inequalities. _satisfied as equalities

max x1 + 629 + 13x3
x1 < 200
xg < 300
z1 + 22 + z3 < 400
x9 + 3z3 < 600
z1 >0
2o 2> @
2a 2

' Vertex: point where n hyperplanes meet;
/ Neighbor: vertices sharing n-1 hyperplanes




Polynomial-time algorithms for LP

» Simplex is nhot poly-time in the worst-case
» Khachiyan's ellipsoid algorithm: LP is in 2
» Karmarkar's interior-point algorithm

* Good implementations for LP exist
- Works very well in practice

- More competitive than the poly-time methods
for LP



Integer Linear Programming

* LP with integral solutions
* NP-hard

+ If A is a totally unimodular matrix, then the
LP solution is always integral.

- A TUM is a matrix for which every nonsingular
submatrix has determinant O, +1 or -1.

- A TUM is a matrix for which every nonsingular
submatrix has integral inverse.



Vertex Cover as an LP?

* For vertex v, create variable x,

* For edge (u,v), create constraint x, + x, > 1
+ Objective function: Zx,

* Additional constraints: x, < 1

» Doesn't work because x, needs to be from
{0.1}



Integer Linear Programming

* LP with integral solutions
* NP-hard

+ If A is a totally unimodular matrix, then the
LP solution is always integral.

- A TUM is a matrix for which every nonsingular
submatrix has determinant O, +1 or -1.

- A TUM is a matrix for which every nonsingular
submatrix has integral inverse.



Vertex Cover as an LP?

* For vertex v, create variable x,

* For edge (u,v), create constraint x, + x, > 1
+ Objective function: Zx,

* Additional constraints: x, < 1

» Doesn't work because x, needs to be from
{0.1}



Set Cover

» Given a universe of items U ={e,, .., e }and a
collection of subsets S = {S;, ..., S} such
that each S, is contained in U

» Find the minimum set of subsets from S that
will cover all items in U (i.e., the union of
these subsets must equal U)

+ Weighted Set Cover: Given universe U and
collection S, and a cost ¢(S;) for each subset
S.in S, find the minimum cost set cover



The Greedy Set Cover Algorithm

The Integer Linear Program (ILP)

min Y ¢(S)zs

Ses

subject to Y zg>1, ee€U
S:ecS
zg € {0,1}, Se€S§

The LP Relaxation

min Y _ ¢(S)zs

Ses

subject to Y zs>1, e€U
S:e€eS

zg =0, Ses

The Dual LP

max 39

ecU

subject to > y. <¢(S), Se€S
e:e€eS
Ye 2 0, ecU




Fractional LP may have higher objective
function value than integer LP

- U={e, f, g}

+ 5;={e, f}

- S, ={f, 9}

+ S;={e, g}

» Optimal set cover = {S;, S,}

- Fractional optimal set cover assigns 3 to
each of three sets giving a total optimal
value of 3/2.



The LP Relaxation

min Y ¢(9)zs

Ses

subject to Y zg > 1,
S:eeS
Eg 2 Oa

The Dual LP Relaxation

max > Ye

eclU

ecU

Ses

subject to Y 3. <¢(S), Se€S

e:eeS
Ye 2 0,

Weak Duality Principle

ecU

If z is primal feasible and ¥ is dual feasible then

Ses

min Z ¢(S)rs > max Z Ye

ecU




K-Approximation Alg using Dual Fitting

o




Analysis of Greedy Set Cover

e In each iteration, greedy algorithm picks the set with
the most uncovered items.

e In iteration 7, let S; be the set picked covering m
previously uncovered items. Let

price(e) = ¢(S;)/m
be the price of each item e covered in this iteration.

o If 51,...,S% are sets chosen by greedy algorithm,

k
Total Cost of Greedy Solution > el5;)
5=1

> price(e)
ecU




Analysis of Greedy Set Cover

Let price(e) = 53)

Consider the following dual variables:

~ price(e)
-

Claim: All dual constraints are satisfied.

Ye

£ o) (1 1 1) H,
<) (T 1 L 4 = 2Ry9) <
¥ \gteon ooty T g <edd)

Thus (Ye,, - - -, Ye,) gives us a dual feasible point.

Y priceley—=H, (z ye) < H,~0OFTp=s H,;-OFT
ecU ecU




Rounding Algorithm for Set Cover

» Algorithm
- Find an optimal solution to the LP Relaxation

- Pick all sets S for which x¢ > 1/f in this solution
* f = frequency of most frequent item

* Analysis
- Is the resulting solution a valid set cover?

- How good is the solution? How close is to the
optimal set cover?



Analysis of Rounding Algorithm

Let C = sets picked by Rounding Algorithm.

Claim 1:

C is a valid set cover.| Arbitrary item e

appears in at most f sets. At least one of these sets
is assigned value 1/f. Thus, e will get picked.

Claim 2:

The rounding algorithm is f-approximate.

Rounding increases the value of each set by a factor
of at most f.




