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m Clustering: Organize a database of docs/images into
“clusters”

m Compression: useful for images

m Summarization: Find parts of document most
representative of paragraph

m Graph Partitioning: partition graph into dense subgraphs;
useful in VLSI where densely connected parts will be laid
out on a chip; also useful in divide-and-conquer algorithms.

m Random Walks: Markov Chain Mixing, Google Page Rank
m Graph Connectivity, Coloring, ...
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m Images: a;; = grayscale value of j-th pixel in i-th image
m Documents: a;; = does document / contain term j
m Medical: ajj = measured parameter j for subject /

Typical Solution: Rows (points) are in low-dimensional
subspace (Rank r) plus some noise. In other words,

A=PT,

where P is a n X r matrix and T is a r X m matrix.
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m Eigenvalues and Eigenvectors

m Solutions to equation Ax = Ax
m Under transformation A, an eigenvector does not change in

direction, its magnitude changes by factor A
b
Ax = hx

v

o] X Ax X

m Decomposition: A= QAQ!
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approximation to A

m If A = A— Aj, then computing up, va, o2 will give us the
second Singular vector and value, ...

m k-th singular vector is orthogonal to all previous ones

m Thus: Ay = Zf:l oiu;v;T and A, = A, where rank(A) = r
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el Let 2, be a diagonal matrix with o1, ..., 0, along diagonal;
Thus, AV, = U + rX,;
Since VT = V1, we have the SVD as

A=UZVT,

which can be computed in O(mn? 4+ m?n) time [Golub and van
Loan, Matrix Computations, 1996]

Also A is the best rank k approximation to A.

Furthermore, |A— A2 =02, + ... + 02
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m Singular values are always real; eigenvalues may be
imaginary;

m Left singular vectors = left eigenvectors of AAT;

m Right singular vectors = right eigenvectors of AT A;

m =02 i=1...,r
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Spectal Compute the eigenvector for the second smallest
Methods eigenvalue, e

m Use the signs of the vector to give a bisection

m Can be used to get bisections with n/2 vertices — by using
the median value in e

m Can be used to get k partitions by performing bisections
recursively or by using more eigenvectors
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