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Source

Most of the material is from notes by Abhiram Ranade;
http:

//www.cse.iitb.ac.in/~ranade/miscdocs/svd.pdf

http://www.cse.iitb.ac.in/~ranade/miscdocs/svd.pdf
http://www.cse.iitb.ac.in/~ranade/miscdocs/svd.pdf
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Applications

Many methods are based on Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD)

Search: Given a database of docs/images, find closest
match to query

Clustering: Organize a database of docs/images into
“clusters”

Compression: useful for images

Summarization: Find parts of document most
representative of paragraph

Graph Partitioning: partition graph into dense subgraphs;
useful in VLSI where densely connected parts will be laid
out on a chip; also useful in divide-and-conquer algorithms.

Random Walks: Markov Chain Mixing, Google Page Rank

Graph Connectivity, Coloring, . . .



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Applications

Many methods are based on Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD)

Search: Given a database of docs/images, find closest
match to query

Clustering: Organize a database of docs/images into
“clusters”

Compression: useful for images

Summarization: Find parts of document most
representative of paragraph

Graph Partitioning: partition graph into dense subgraphs;
useful in VLSI where densely connected parts will be laid
out on a chip; also useful in divide-and-conquer algorithms.

Random Walks: Markov Chain Mixing, Google Page Rank

Graph Connectivity, Coloring, . . .



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Applications

Many methods are based on Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD)

Search: Given a database of docs/images, find closest
match to query

Clustering: Organize a database of docs/images into
“clusters”

Compression: useful for images

Summarization: Find parts of document most
representative of paragraph

Graph Partitioning: partition graph into dense subgraphs;
useful in VLSI where densely connected parts will be laid
out on a chip; also useful in divide-and-conquer algorithms.

Random Walks: Markov Chain Mixing, Google Page Rank

Graph Connectivity, Coloring, . . .



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Applications

Many methods are based on Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD)

Search: Given a database of docs/images, find closest
match to query

Clustering: Organize a database of docs/images into
“clusters”

Compression: useful for images

Summarization: Find parts of document most
representative of paragraph

Graph Partitioning: partition graph into dense subgraphs;
useful in VLSI where densely connected parts will be laid
out on a chip; also useful in divide-and-conquer algorithms.

Random Walks: Markov Chain Mixing, Google Page Rank

Graph Connectivity, Coloring, . . .



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Applications

Many methods are based on Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD)

Search: Given a database of docs/images, find closest
match to query

Clustering: Organize a database of docs/images into
“clusters”

Compression: useful for images

Summarization: Find parts of document most
representative of paragraph

Graph Partitioning: partition graph into dense subgraphs;
useful in VLSI where densely connected parts will be laid
out on a chip; also useful in divide-and-conquer algorithms.

Random Walks: Markov Chain Mixing, Google Page Rank

Graph Connectivity, Coloring, . . .



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Applications

Many methods are based on Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD)

Search: Given a database of docs/images, find closest
match to query

Clustering: Organize a database of docs/images into
“clusters”

Compression: useful for images

Summarization: Find parts of document most
representative of paragraph

Graph Partitioning: partition graph into dense subgraphs;
useful in VLSI where densely connected parts will be laid
out on a chip; also useful in divide-and-conquer algorithms.

Random Walks: Markov Chain Mixing, Google Page Rank

Graph Connectivity, Coloring, . . .



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Applications

Many methods are based on Principal Component Analysis
(PCA) and Singular Value Decomposition (SVD)

Search: Given a database of docs/images, find closest
match to query

Clustering: Organize a database of docs/images into
“clusters”

Compression: useful for images

Summarization: Find parts of document most
representative of paragraph

Graph Partitioning: partition graph into dense subgraphs;
useful in VLSI where densely connected parts will be laid
out on a chip; also useful in divide-and-conquer algorithms.

Random Walks: Markov Chain Mixing, Google Page Rank

Graph Connectivity, Coloring, . . .



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Common Theme

Given n points in m-dimensional space, typically given to us as
an n×m matrix A, where the i-th row gives cooridinates of the
i-th point.

Question: Disocver structure, shape, correlations, patterns, . . .
Examples:

Images: aij = grayscale value of j-th pixel in i-th image

Documents: aij = does document i contain term j

Medical: aij = measured parameter j for subject i

Typical Solution: Rows (points) are in low-dimensional
subspace (Rank r) plus some noise. In other words,

A = PT ,

where P is a n × r matrix and T is a r ×m matrix.
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Geometric Interpretations

1-dimensional array with n items

Point in space

Vector

Matrix with n rows and m columns

n points in m-dimensional space
More important interpretation . . .
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Geometric Interpretations ... 2

Matrix with n rows and m columns

Linear transformations Rm ↔ Rn

Eigenvalues and Eigenvectors

Solutions to equation Ax = λx
Under transformation A, an eigenvector does not change in
direction, its magnitude changes by factor λ

Decomposition: A = QΛQ−1
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Geometric Interpretations ... 3

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

max ‖Av1‖2 or max ‖uT1 A‖2 or max ‖uT1 Av1‖2,

implying that Av1 is in the same direction as u1 OR that
uT1 A is in the same direction as vT

1

First singular value σ1 = ‖Av1‖2 = ‖uT1 A‖2.

Additional Singular vectors

A1 = Av1v
T
1 = σ1u1v

T
1 is of rank 1 and is the best rank 1

approximation to A
If A′ = A− A1, then computing u2, v2, σ2 will give us the
second Singular vector and value, . . .
k-th singular vector is orthogonal to all previous ones
Thus: Ak =

∑k
i=1 σiuiv

T
i and Ar = A, where rank(A) = r
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First singular value σ1 = ‖Av1‖2 = ‖uT1 A‖2.

Additional Singular vectors

A1 = Av1v
T
1 = σ1u1v

T
1 is of rank 1 and is the best rank 1

approximation to A
If A′ = A− A1, then computing u2, v2, σ2 will give us the
second Singular vector and value, . . .
k-th singular vector is orthogonal to all previous ones
Thus: Ak =

∑k
i=1 σiuiv

T
i and Ar = A, where rank(A) = r
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Singular Value Decomposition (SVD)

Let Uk be a matrix with columns u1, . . . , uk ;

Let Vk be a matrix with columns v1, . . . , vk ;
Let Σk be a diagonal matrix with σ1, . . . , σk along diagonal;
Thus, AVr = U + rΣr ;
Since V T = V−1, we have the SVD as

A = UΣV T ,

which can be computed in O(mn2 + m2n) time [Golub and van
Loan, Matrix Computations, 1996]
Also Ak is the best rank k approximation to A.
Furthermore, ‖A− Ak‖2F = σ2k+1 + . . .+ σ2r .
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Singular Values/Vectors vs Eigenvectors/values

Singular vectors approximate directions of rows/columns
of matrix;

Singular values are always real; eigenvalues may be
imaginary;

Left singular vectors = left eigenvectors of AAT ;

Right singular vectors = right eigenvectors of ATA;

λi = σ2i , i = 1, . . . , r
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Graph Bisection

If A is the adjacency matrix, then the Laplacian,

L = M − A,

where M is the diagonal matrix of vertex degrees.

L is positive semi-definite (PSD), i.e., all eigenvalues are
non-negative;

L has smallest eigenvalue = 0

Oddly enough, the eigenvector e2 for the second smallest
eigenvalue λ2 provides info on bisection
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Graph Bisection ... 2

Compute the eigenvector for the second smallest
eigenvalue, e2

Use the signs of the vector to give a bisection

Can be used to get bisections with n/2 vertices – by using
the median value in e2

Can be used to get k partitions by performing bisections
recursively or by using more eigenvectors
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Spectral Clustering

Let A be the adjacency matrix and M = diagonal matrix
of degrees

Construct the Laplacian (PSD)

Unnormalized: L = M − A
Normalized, symmetric: L = D−1/2LD1/2

Random Walk: L = D−1L

Define Lk as the matrix with first k eigenvectors as its
columns

Cluster rows of Lk



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Spectral Clustering

Let A be the adjacency matrix and M = diagonal matrix
of degrees

Construct the Laplacian (PSD)

Unnormalized: L = M − A
Normalized, symmetric: L = D−1/2LD1/2

Random Walk: L = D−1L

Define Lk as the matrix with first k eigenvectors as its
columns

Cluster rows of Lk



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Spectral Clustering

Let A be the adjacency matrix and M = diagonal matrix
of degrees

Construct the Laplacian (PSD)

Unnormalized: L = M − A

Normalized, symmetric: L = D−1/2LD1/2

Random Walk: L = D−1L

Define Lk as the matrix with first k eigenvectors as its
columns

Cluster rows of Lk



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Spectral Clustering

Let A be the adjacency matrix and M = diagonal matrix
of degrees

Construct the Laplacian (PSD)

Unnormalized: L = M − A
Normalized, symmetric: L = D−1/2LD1/2

Random Walk: L = D−1L

Define Lk as the matrix with first k eigenvectors as its
columns

Cluster rows of Lk



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Spectral Clustering

Let A be the adjacency matrix and M = diagonal matrix
of degrees

Construct the Laplacian (PSD)

Unnormalized: L = M − A
Normalized, symmetric: L = D−1/2LD1/2

Random Walk: L = D−1L

Define Lk as the matrix with first k eigenvectors as its
columns

Cluster rows of Lk



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Spectral Clustering

Let A be the adjacency matrix and M = diagonal matrix
of degrees

Construct the Laplacian (PSD)

Unnormalized: L = M − A
Normalized, symmetric: L = D−1/2LD1/2

Random Walk: L = D−1L

Define Lk as the matrix with first k eigenvectors as its
columns

Cluster rows of Lk



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Spectral Clustering

Let A be the adjacency matrix and M = diagonal matrix
of degrees

Construct the Laplacian (PSD)

Unnormalized: L = M − A
Normalized, symmetric: L = D−1/2LD1/2

Random Walk: L = D−1L

Define Lk as the matrix with first k eigenvectors as its
columns

Cluster rows of Lk



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Spectral Clustering

Let A be the adjacency matrix and M = diagonal matrix
of degrees

Construct the Laplacian (PSD)

Unnormalized: L = M − A
Normalized, symmetric: L = D−1/2LD1/2

Random Walk: L = D−1L

Define Lk as the matrix with first k eigenvectors as its
columns

Cluster rows of Lk


	Spectral Methods

