# **Analysis of HIV Sequences From Patients Data**

By Patricia Buendia

## Why study HIV data:

- Viruses have a high evolution rate
- Large amount of data in public databases
- Evolutionary pattern closely related to the immunological status of host
- Analysis of serially sampled data significant to medical assessment of disease

# Drugs and the HIV Life Cycle



### Analysis of First Set of Data

1 Year study of 10 patients before and during therapy
Drug therapy: AZT(ZDV)-3TC-IDV
5 to 9 sequences per patient in Genbank

Reference

Günthard et al. – Journal of Virology 1998

Human immunodeficiency virus replication and genotypic resistance in blood and lymph nodes after a year of potent antiretroviral therapy

## ML Tree for Patient F





- Generated by Phylip's DNAML program
- Implements maximum likelihood method

## geno2pheno

- Input: HIV-1 pol-gene DNA sequence
- Output: predictions of phenotypic resistance to 17 antiretroviral drugs
- How: 2-class phenotype predictions using decision trees and SVM

FOR MORE INFO...

http://217.89.67.10/cgi-bin/geno2pheno.pl/

#### Patient F: Drug Resistance Prediction Results

#### Sample AF040589 before receiving ZDV-3TC- IDV drug therapy

#### Sample AF040592 after a year of ZDV-3TC-IDV drug therapy (March 1998)

| Drug | Cutoff | Decision tree               | SVM                         | Predicted               | Drug | Cutoff | Decision tree               | SVM                         | Predicted                 |
|------|--------|-----------------------------|-----------------------------|-------------------------|------|--------|-----------------------------|-----------------------------|---------------------------|
| -    |        | classification <sup>1</sup> | classification <sup>2</sup> | fold-                   | _    |        | classification <sup>1</sup> | classification <sup>2</sup> | fold-                     |
|      |        | [confidence factor]         |                             | resistance              |      |        | [confidence factor]         |                             | resistance                |
|      |        |                             |                             | (SVM                    |      |        |                             |                             | (SVM                      |
|      |        |                             |                             | regression <sup>2</sup> |      |        |                             |                             | regression <sup>2</sup> ) |
| ZDV  | 8.5    | resistant [0.90]            | resistant                   | 13.6                    | ZDV  | 8.5    | resistant [0.90]            | resistant                   | <b>26.</b> 7              |
| ddC  | 2.5    | susceptible [0.80]          | susceptible                 | 1.5                     | ddC  | 2.5    | resistant [0.73]            | resistant                   | 2.6                       |
| ddI  | 2.5    | susceptible [0.86]          | susceptible                 | 1.6                     | ddI  | 2.5    | resistant [0.58]            | resistant                   | 2.4                       |
| d4 T | 2.5    | susceptible [0.71]          | susceptible                 | 1.8                     | d4T  | 2.5    | susceptible [0.71]          | susceptible                 | 1.9                       |
| 3TC  | 8.5    | susceptible [0.80]          | susceptible                 | 5.8                     | 3TC  | 8.5    | resistant [0.98]            | resistant                   | 211.0                     |
| ABC  | 2.5    | resistant [0.89]            | susceptible                 | 2.2                     | ABC  | 2.5    | resistant [0.89]            | resistant                   | 4.0                       |
| TDF  | 2.5    | susceptible [0.88]          | susceptible                 | 2.2                     | TDF  | 2.5    | resistant [0.76]            | susceptible                 | 1.8                       |
| NVP  | 8.5    | susceptible [0.89]          | susceptible                 | 1.5                     | NVP  | 8.5    | susceptible [0.89]          | susceptible                 | 5.3                       |
| DLV  | 8.5    | susceptible [0.89]          | susceptible                 | 1.5                     | DLV  | 8.5    | susceptible [0.89]          | susceptible                 | 1.5                       |
| EFV  | 8.5    | susceptible [0.91]          | susceptible                 | 1.1                     | EFV  | 8.5    | susceptible [0.91]          | susceptible                 | 2.2                       |
| SQV  | 3.5    | susceptible [0.89]          | susceptible                 | 1.1                     | SQV  | 3.5    | resistant [0.88]            | susceptible                 | 3.0                       |
| IDV  | 3.5    | susceptible [0.90]          | susceptible                 | 1.2                     | IDV  | 3.5    | resistant [0.87]            | susceptible                 | 3.0                       |
| RTV  | 3.5    | susceptible [0.91]          | susceptible                 | 1.1                     | RTV  | 3.5    | resistant [0.89]            | susceptible                 | 2.7                       |
| NFV  | 3.5    | susceptible [0.89]          | susceptible                 | 1.0                     | NFV  | 3.5    | resistant [0.93]            | susceptible                 | 3.3                       |
| APV  | 3.5    | susceptible [0.92]          | susceptible                 | 1.3                     | APV  | 3.5    | susceptible [0.92]          | susceptible                 | 1.7                       |
| LPV  | 3.5    | susceptible [0.86]          | susceptible                 | 1.1                     | LPV  | 3.5    | susceptible [0.86]          | susceptible                 | 1.5                       |
| ATV  | 3.5    | susceptible [0.84]          | susceptible                 | 1.4                     | ATV  | 3.5    | resistant [0.83]            | susceptible                 | 2.6                       |

## Analysis of Second Set of Data

#### • 5 Year study of HAART therapy

- 2 patients under 3TC + d4T+ ldv drug therapy
- 1 patient under 3TC + d4T + Nfv + Sqv
- approx. 250 sequences per patient
- Observation: Viral load increased after discontinuation of therapy

#### Reference

Imamichi et al. – Journal of Infectious Diseases 2001 *Human immunodeficiency virus Type 1 quasi species rebound after discontinuation of higly active antiretroviral therapy…* 



#### ML Protease Tree

#### Tree for Patient 2 was constructed using DNAML



gi|902798|gb|U26942.1|HIV1U269

 Time 1: -5 months before

 first count of <50 copies/mL</td>

 2
 3
 4
 6
 23
 26
 27
 30
 31
 34
 35
 37
 38
 39

 & before therapy start
 1
 5
 22
 24
 25
 28
 29
 36
 40
 44

 Time 2: 0 months and first

 documented count
 19 9 41 24
 8 13 48 7
 28 20 36 40 10 11 44

 of <50 copies/mL</td>

 Time 3: 12 months after

 first count
 12 22 13 28 36 43 42 49 14 44

 of <50 copies/mL</td>

 Time 4: 18 months after
 15 22 28 16 17 29 36 18 45 44

 first count
 15 22 28 16 17 29 36 18 45 44

 of <50 copies/mL</th>
 15 22 28 16 17 29 36 18 45 44

Time 5: 29 months after first count of < 50copies/mL 19 22 25 20 21 33 48 31 32 36 46 47 44 3 weeks after discontinuation of therapy & relapse

#### Find Closest Ancestor

• Use a distance matrix

 Find closest distance between sequences from consecutive time periods

|    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1  |        |        |        |        |        |        |        |        |        |        |        |
| 2  | 0.0067 |        |        |        |        |        |        |        |        |        |        |
| 3  | 0.0101 | 0.0101 |        |        |        |        |        |        |        |        |        |
| 4  | 0.0135 | 0.0135 | 0.0101 |        |        |        |        |        |        |        |        |
| 5  | 0.0101 | 0.0101 | 0.0067 | 0.0101 |        |        |        |        |        |        |        |
| 6  | 0.0101 | 0.0034 | 0.0135 | 0.0168 | 0.0135 |        |        |        |        |        |        |
| 7  | 0.0135 | 0.0135 | 0.0101 | 0.0067 | 0.0101 | 0.0168 |        |        |        |        |        |
| 8  | 0.0101 | 0.0101 | 0.0067 | 0.0101 | 0.0067 | 0.0135 | 0.0101 |        |        |        |        |
| 9  | 0.0135 | 0.0135 | 0.0101 | 0.0135 | 0.0034 | 0.0168 | 0.0135 | 0.0101 |        |        |        |
| 10 | 0.0135 | 0.0202 | 0.0168 | 0.0202 | 0.0168 | 0.0236 | 0.0202 | 0.0168 | 0.0135 |        |        |
| 11 | 0.0135 | 0.0202 | 0.0168 | 0.0202 | 0.0168 | 0.0236 | 0.0202 | 0.0168 | 0.0135 | 0.0067 |        |
| 12 | 0.0135 | 0.0202 | 0.0168 | 0.0202 | 0.0101 | 0.0236 | 0.0202 | 0.0168 | 0.0135 | 0.0202 | 0.0202 |
| •  | •      | •      | •      |        | •      |        | •      |        | •      | •      | •      |

#### Neutral and Darwinian Selective Evolution

| Sequence 1:<br>Sequence 2: | ATC<br>ATC | GTA<br>GTT | CCT<br>ACT |
|----------------------------|------------|------------|------------|
|                            | -          | SYN        | NONSYN     |
|                            | Ile        | Val        | Pro->Thr   |
|                            |            |            |            |

- Detect positive selection by comparing rates of nonsynonymous to synonymous substitutions ω = d<sub>N</sub>/d<sub>S</sub>
- assume the nonsynonymous substitutions are proof of positive selection  $\omega > 1$

 pairwise calculation of positive selection rate ω is done using Yang's codon-based model implemented in PAML

# Algorithm for Analysis of serially sampled data

- 1) Calculate distance matrix for unique sequences (DNADIST)
- Calculate pairwise positive selection rate ω (PAML)
- 3) Separate sequences into time groups t<sub>i</sub>,...,t<sub>n</sub>
- 4) For each seq<sub>d</sub> ∈ t<sub>i</sub> find seq<sub>a</sub> ∈ t<sub>i-1</sub> so that dist(seq<sub>d</sub>,seq<sub>a</sub>) = min(dist(seq<sub>d</sub>,seq<sub>i</sub>)) ∀ seq<sub>i</sub> ∈ t<sub>i-1</sub>
- 5) For each such pair found in 4), get  $\omega$  from matrix in 2), to determine positive selection  $(\omega > 1)$

| Time 1: -5 months before<br>first count of <50 copies/mI                                 | 2       | 2 3          | 4 6                | 5 23 20     | 5 <mark>27 30 3</mark> | 1 34 3          | 5 37                 | 38 39                   |
|------------------------------------------------------------------------------------------|---------|--------------|--------------------|-------------|------------------------|-----------------|----------------------|-------------------------|
| &before therapy start                                                                    | 1       | 5            | <mark>22</mark> 24 | 25          | <mark>28</mark>        | <mark>29</mark> | <mark>40</mark>      | <mark>44</mark>         |
| 20%                                                                                      |         |              |                    |             | ***                    |                 |                      |                         |
| Time 2: 0 months and first<br>documented count<br>of <50 copies/mL                       | 19      | 9 4          | 11 24              | 8 13 4      | 8 7 28                 | 20 <u>3</u> 6   | 40 <b>1</b>          |                         |
| 30%                                                                                      |         |              |                    |             |                        |                 |                      |                         |
| Time 3: 12 months after<br>first count<br>of <50 copies/mL                               | ]<br>1/ | 2 22         |                    | 13          | <mark>28</mark>        | <mark>36</mark> | 43 42                | 2 <mark>49 14 44</mark> |
| 10%                                                                                      |         |              |                    |             |                        |                 | * * * *              |                         |
| Time 4: 18 months after<br>first count<br>of <50 copies/mL                               | ]       | 5 22         |                    |             | 28                     | 16 17           | 29 36                | 18 45 44                |
| 7.5%                                                                                     |         |              |                    |             |                        | ///             |                      |                         |
| Time 5: 29 months after<br>first count of <50 copies/mI<br>3 weeks after discontinuation | ]<br>)n | 9 22<br>9 12 | hera               | 25<br>apy & | 20 21 33<br>relapse    | 48 3<br>e       | 1 <mark>32 36</mark> | 46 47 44                |

## Conclusion

Reasons for drug therapy failure:

- appearance of multidrug-resistant virus:
- non-drug resistant virus continues to replicate in virus reservoirs of special cells

 New methods needed for analysis of time consecutive HIV-1 data