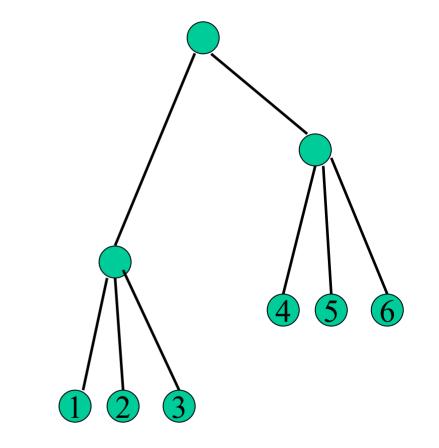
GYM Training Set Selection Part-2

Jerry Deng Yanli Sun

3. Algorithm

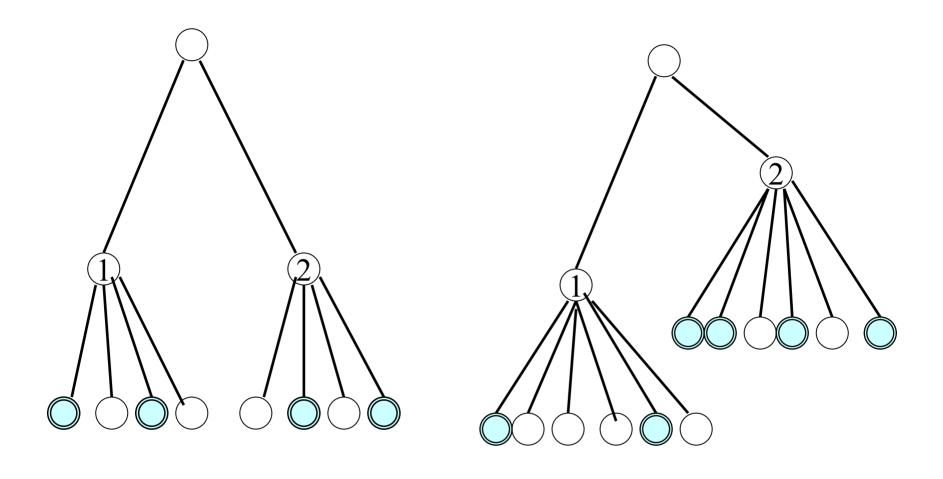

- To remove some very similar (or duplicated) sequences from the training set in order to reduce both pure and partial spurious patterns in pattern dictionary.
- Use Phylogenetic Tree to figure out similarity among sequences.

3.1. Similarity Measurement

- Alignment Score
 - either pairwise or multiple
 - unable to give further information such as evolutionary and classification information.
- Phylogenetic Tree
 - evolution family classification
 - evolution distance.
 - Black box

3.2. Phylogenetic Tree

- Sequences in one family are closer than those from different families.
- For an internal node, the farther it is away from the root, the more likely that all its descents are closer.

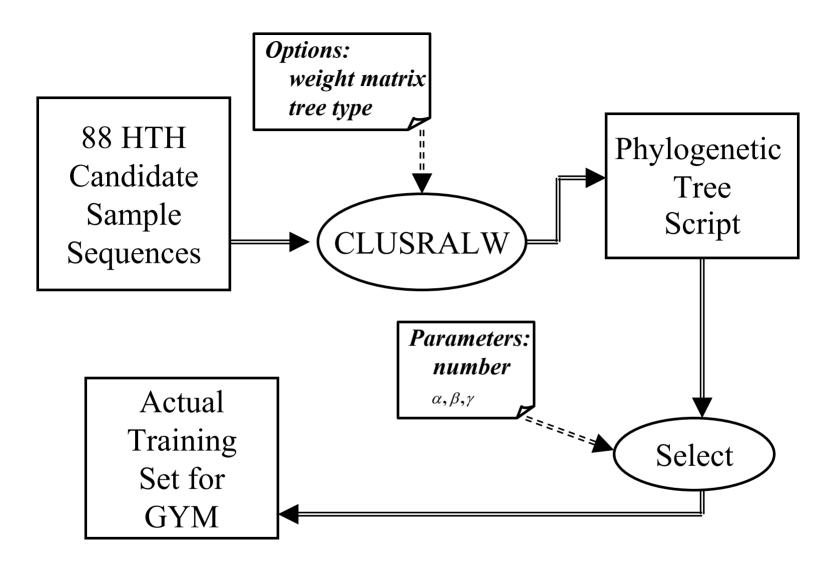


3.3. Node Score

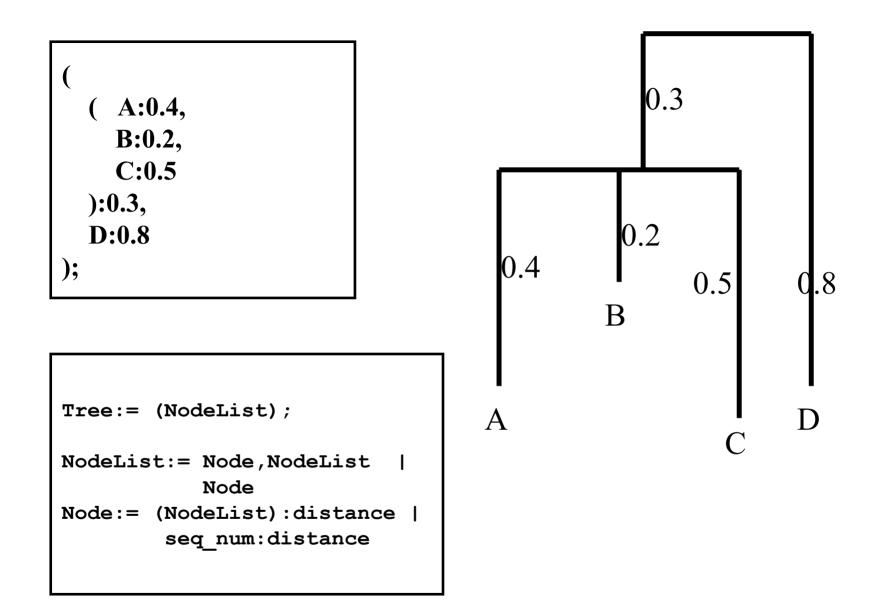
- To precisely measure the evolutionary similarity, A score was recursively calculated for each node.
 - The root's value is 0
 - For a non-root node:

(Index+B*(1- DistanceP)* (A*Degree)^(TD-depth) +G*(1-Distance)

- Degree: The maximum branching degree present in the tree.
- TD: Total depth of the tree
- Depth: The depth of current node
- Index: The sequential index among siblings
- DistanceP: The total distance between root and its parent node.
- Distance: The distance from the underlying node to its parent
- A: Constant factor, default is 1.5
- B: Constant factor, default is 1
- G: Constant factor, default is 1



3.4. Selection


- The difference between the scores of two nodes reflects the evolutionary similarity between them.
- Once the scores have been obtained for all sequences (nodes), they are put into a list in order by traversing the tree in a depth-first manner.
- Repeatedly find out the pair of nodes of the smallest difference, remove one of them from the list, until the number of sequences contained reaches the desired number.

4. Implementation

- Three steps:
 - tree parsing
 - calculating scores
 - selecting training set
- Application
 - Input
 - tree script
 - desired size of training set
 - Output
 - training set

Illustration of Data Flow

Script Passing

5. Test Result

We testing was performed on

- two different phylogenetic trees from CLUSTAL based on GYM's Master Set in our testing.
 - One was generated with the default setup
 - other one was generated wit BLOSUM matrix and PHILIP tree type
- Various number of sequences in the training set out of 88.

Protein Family	Number of Sequences	GYM = DE Agree	How	GYM= Annotated	False Positiv
Family	Tested	Agree	many Annotat	Annotated	FOSICI
			e d		
Master	88	88(100%)	13	12	N / A
Sigma	314	283+23(97%)	96	89	N / A
Negate	93	88(95%)	0	0	5
LysRe	130	127 (98%)	95	89	N / A
Arace	68	58(85%)	4 1	31	N / A
Rreg	116	98(84%)	57	56	N / A
Total	809	765(95%)	302	277 (92%)	

BLOSUM, PHILIP, 82

Protein	Number of	GYM = DE	How many	GYM=	False
Family	Sequences	Agree	Annotated	Annotated	Positi
	Tested				
Master	88	88(100%)	13	13	N/A
Sigma	314	283+23(97%)	96	89	N/A
Negate	93	87 (94%)	0	0	6
LysRe	130	127(98%)	95	89	N/A
Arace	68	58(85응)	41	33	N/A
Rreg	116	96(83%)	57	56	N/A
Total	809	762(94%)	302	280(93%)	

BLOSUM, PHILIP, 84

Protein	Number of	GYM = DE	How many	GYM=	False
Family	Sequences	Agree	Annotated	Annotated	Positi
	Tested				
Master	8 8	88(100%)	13	13	N / A
Sigma	314	284+23(98%)	96	82	N / A
Negate	93	86(92%)	0	0	7
LysRe	130	127(98%)	95	93	N / A
Arace	68	57 (84%)	41	34	N / A
Rreg	116	99(85%)	57	46	N / A
Total	809	764(94%)	302	268(89%)	

GYM Original Result From above testing results, we can see:

- slightly increased detection rate on some protein families (e.g. Sigma, Rege and Lysr) where HTH motif existences are verified
- decreased false positive rate on Negates family where HTH motif is unlikely to exist.

With just a few (4~6) very similar HTM motif sequences removed

6. Conclusion

- This project presents an effective approach for training set refinement in pattern mining by means of similarity control among sequences.
- For pattern mining, like the two sides of a coin, similarity represents the trade-off between the sensitivity of both true positives and false positives.
- In practice, the optimal similarity control can only be achieved by experiments. Theoretically, there is no algorithm that can automatically figure out the optimal similarity threshold without further biological knowledge.